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ABSTRACT
In cloud computing, it is desirable if suspicious activities can be de-
tected by automatic anomaly detection systems. Although anomaly
detection has been investigated in the past, it remains unsolved in
cloud computing. Challenges are: characterizing the normal behav-
ior of a cloud server, distinguishing between benign and malicious
anomalies (attacks), and preventing alert fatigue due to false alarms.

We propose CloudShield, a practical and generalizable real-time
anomaly and attack detection system for cloud computing. Cloud-
shield uses a general, pretrained deep learning model with different
cloud workloads, to predict the normal behavior and provide real-
time and continuous detection by examining the model reconstruc-
tion error distributions. Once an anomaly is detected, to reduce alert
fatigue, CloudShield automatically distinguishes between benign
programs, known attacks, and zero-day attacks, by examining the
reconstruction error distributions. We evaluate the proposed Cloud-
Shield on representative cloud benchmarks. Our evaluation shows
that CloudShield, using model pretraining, can apply to a wide scope
of cloud workloads. Especially, we observe that CloudShield can
detect the recently proposed speculative execution attacks, e.g., Spec-
tre and Meltdown attacks, in milliseconds. Furthermore, we show
that CloudShield accurately differentiates and prioritizes known at-
tacks, and potential zero-day attacks, from benign programs. Thus,
it significantly reduces false alarms by up to 99.0%.

1 INTRODUCTION
The importance of cloud computing has grown significantly in the
past years. Cloud customers can lease virtual machines from the
cloud providers economically, sharing the physical resources pro-
vided by the cloud computing servers. Large cloud providers, like
Amazon AWS, Google Cloud Platform, and Microsoft Azure, have
proliferated this trend.

There have been various attacks against cloud computing, espe-
cially on shared resources. For example, security-critical information,
e.g., encryption keys, can be leaked by cache side-channel attacks.
Previous work have revealed that many types of cache side-channel
attacks can successfully obtain secret or private cryptographic keys
[6, 26, 30, 39]. Recently, speculative execution attacks [23–25] ex-
ploit performance optimization features of modern processors to
breach the user-user, user-kernel or user-hypervisor isolation. Be-
sides, zero-day attacks introduce challenges as they do not have
known code nor known behavior.

Anomaly detection techniques are perhaps the only viable solu-
tion for detecting unknown zero-day attacks. By its nature, anomaly
detection does not look for specifics of an attack but models the nor-
mal behavior of a system. Deviation from normal behavior indicates
anomalies: either an attack or a benign anomaly.

However, existing anomaly detection systems in the cloud have
challenges. First, a model of cloud server behavior is usually scenario-
specific and is not easy to extend. Multiple models have to be built
to cover various cloud workloads. Second, false alarms in anomaly
detection systems are very common in practice. The large volume

of false alarms overwhelms the security analysts and causes alert
fatigue, potentially causing real attacks to be missed.

In this work, we investigate three questions. First: How to model
the different cloud workloads? We hypothesize that the normal be-
havior of a cloud server, although different from workload to work-
load running on it, consists of a major predictable part, and a minor
unpredictable part that follows a certain probability distribution. If
we pre-train a general model to predict a cloud system’s behavior,
an anomaly can be detected by subtracting the predictable part from
the original behavior markers and identifying the distribution of
the remaining unpredictable part. To this end, we propose that the
distribution of the unpredicted part denoted Reconstruction Error
Distribution (RED), can capture the characteristics of cloud work-
load. We show that rather than deploying an individual model for
each workload, a general pretrained predictor model is leveraged,
and anomalies are identified by statistically comparing the REDs.

The second question we investigate is: How to select appropriate
behavior markers to detect anomalous behavior in the cloud in real-
time? Quick detection of anomalies and attacks can prevent further
damage. To support real-time anomaly detection in the cloud, we
need an approach to select appropriate behavior markers that can be
measured at high frequency and can reliably represent the system’s
behavior. To this end, we propose a principal component analysis
(PCA)-based behavior marker selection method, and leverage the
hardware performance counters, which are originally designed to
monitor system performance and can be measured at high frequency,
as exemplary markers to support real-time protection.

The third question we explore is: How to distinguish benign
anomalies and malicious attacks? In practice, the “benign anoma-
lous” behavior of a cloud system is quite common. For example,
a cloud server used for database applications may be scheduled a
different task when its workload is low. The missing piece in the
past anomaly detection is the ability to correctly recognize the new
tasks as benign. Otherwise, a large number of false alarms are raised,
causing the system to be no longer usable. In this work, we refine
each detected anomaly with the identification of benign anomalies
and known attacks as a second step. This can significantly alleviate
the false alarm problem in anomaly detection.

Section 2 describes the background. Section 3 presents the threat
model. Section 4 discusses key challenges for anomaly detection in
cloud computing. Section 5 describes our CloudShield methodology
and Section 6 evaluates our design.

2 BACKGROUND
2.1 Attacks in Cloud Computing
There have been many attacks on cloud computing. We focus on
the rapidly growing and representative class of software attacks on
shared hardware resources in cloud servers. Two main types are
speculative execution attacks and cache-based side-channel attacks,
which we use as example attacks in the evaluation of our anomaly
detection system. We also include software attacks, e.g., buffer over-
flow, in our evaluation. Our system is not tailored at all to defeat



these attacks, and the goal of our system is to detect even zero-day
attacks, which are attacks that have never been seen before.

2.1.1 Speculative Execution Attacks. Since their first appearance in
January 2018, speculative execution attacks [24, 25] have bombarded
the world, with new variants continuously popping up. These attacks
can leak the entire memory and break the software isolation provided
by different virtual machines in the cloud, different virtual address
spaces, and even by secure enclaves provided by SGX [38]. These
attacks allow transient instructions to execute, illegally access a
secret, and change the microarchitectural state based on the secret
[16].

2.1.2 Cache Side-channel Attacks. Cache-based side-channel at-
tacks are timing attacks that have traditionally been used to leak the
secret key of symmetric-key ciphers or the private key of public-key
ciphers, thus nullifying any security provided by such cryptographic
protections [17]. Two representative cache side-channel attacks are
the flush-reload attack and prime-probe attack. A variant of the flush-
reload attack, i.e., the flush-flush attack [13], exploits the early abort
if the cacheline to be flushed is not in the cache.

2.1.3 Buffer Overflow Attacks. A buffer overflow attack [37] occurs
when the written data exceeds the size of an allocated buffer. Buffer
overflow attacks can be exploited by an attacker to insert code and
data. A buffer overflow attack is usually triggered by malformed
input to write executable code or malicious data to a destination that
exceeds the size of the buffer. If the malicious code or wrong data
is used in the program, erratic program behavior would occur, e.g.,
system crash, incorrect results, or incorrect privilege escalation.

2.2 Hardware Performance Counters
Hardware performance counters (HPCs) are special registers that
record hardware events. HPCs are widely available in commodity
processors, including Intel, ARM, AMD, and PowerPC. Processors
have been equipped with a Performance Monitor Unit (PMU) to
manage the recording of hardware events. HPCs measure hardware
events like the number of cache references, the number of instruc-
tions executed, and the number of branch mis-predictions; they also
measure system events, like the number of page faults and the num-
ber of context switches.

Although the HPCs were designed for system performance moni-
toring and software debugging, previous work have also shown the
feasibility of using hardware performance counters in security, e.g.,
detecting malware [10, 31], firmware-modification [36] and kernel
root-kits [35]. Unlike these existing work, CloudShield leverages
the reconstruction error distribution of HPCs, rather than directly
using the noisy HPCs for anomaly detection.

3 THREAT MODEL
The target system is a cloud-based Infrastructure-as-a-Service (IaaS)
system, where programs share hardware resources. The programs
running on the IaaS platform may interfere with each other. As is
commonly done, important and frequently used cloud services are
scheduled one main task per machine, or per processor core, e.g.,
machine learning training, database query, MapReduce, or being
used as a web or stream server. New tasks can be scheduled on the
same core if the workload of the main task is low.

Our threat model covers attacks that breach the confidentiality and
integrity of the cloud computing system. Availability attacks are not
specifically covered in our threat model. Notably, the side-channel
attacks and the recently proposed speculative execution attacks are
considered in this threat model. We assume the attacker can launch
attack programs in the cloud. We assume that an attack program can
hide by switching between running and sleeping.

Our threat model particularly includes zero-day attacks. Unlike
signature-based attack detection, we do not make particular assump-
tions about the attacks. We assume that there is no prior knowledge
of attack code and the way the adversary interferes with the system.

Furthermore, once an anomaly is detected, we explicitly consider
reducing false alarms caused by other benign programs that concur-
rently run. These benign programs need to be distinguished from
attacks, otherwise, they can cause a large number of false alarms.
Consequently, cyber analysts can be overwhelmed by false alarms
and miss real attacks, making the detection system ineffective in
practice. Therefore, discriminating benign programs, known attacks,
and zero-day attacks is an important component in this work.

4 CLOUDSHIELD CHALLENGES
We first identify three challenges of anomaly detection in the cloud,
and how they can be handled:

(1) How to model the different cloud workloads?
(2) How to select appropriate behavior markers?
(3) How to Distinguish Benign Anomalies and Malicious At-

tacks?

4.1 How to Model Different Cloud Workloads?
Our intuition of modeling cloud workloads, which may vary a lot in
their functionalities, scales, and required resources, is that the behav-
ior of a cloud server running a common cloud workload can be
decomposed into two parts: a major predictable component and a
minor unpredictable component. The predictable component can
be predicted by a pre-trained model. The unpredictable compo-
nent follows an unknown but fixed distribution. We will validate
this hypothesis in Section 6.

We present a running example to illustrate this idea in Figure
1. Two sine curves plus subtle perturbations are shown in the top
row, marked green and yellow, respectively. By looking at only these
two raw measurements, one may not be able to tell the difference.
We then subtract the predictable signal (the blue sine curves in the
second row) to get the remaining part in the third row and exam-
ine the distribution of this remaining unpredictable part (bottom
row). It shows that the probability distribution of the remaining part,
which we denote the reconstruction error distribution (RED) from a
prediction model, amplifies the difference.

With this assumption, rather than an individual model for each
workload, we can pre-train a general workload behavior predictor
model M for the predictable component, and subtract the predic-
tion from the observed measurement of the system. The distribution
of the remaining unpredictable component, i.e., the reconstruction
error distribution (RED), can reveal the normal behavior from anom-
aly. We leverage RED as the key to anomaly detection. Stealthy
attacks can be subtle and hide within normal measurements. How-
ever, subtracting the major predictable component from the observed
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Figure 1: A running example of the reconstruction error dis-
tribution. Our intuition is that the behavior of a system can
be decomposed into two parts: a major predictable component
and a minor unpredictable component. If we can separate the
predictable from the unpredictable component using a predic-
tion model, the difference between normal and anomaly is more
clearly revealed.

measurements amplifies the anomalous behavior and provides a
robust way of detecting sneaky anomalies.

4.2 How to Select Appropriate Behavior
Markers?

Modern processors usually provide counts of various events that can
be used as behavior markers. Monitoring all of them is inefficient, if
not impossible. Therefore, we need a method to choose the appropri-
ate behavior markers from all possible markers that can represent
the normal behavior of a system.

Our key idea for selecting behavior markers is to quantify the
relative importance of the selected events representing the normal
behavior of a system. Given the set of all possible behavior markers
b1,b2...bn, we can define a metric f to evaluate the relative contribu-
tion of a marker in representing the normal behavior of the system.
Then, the behavior markers are sorted in descending order according
to f (b). The markers that exceed a certain threshold of importance
are selected as candidate markers. In our implementation, we define
f based on principal component analysis (PCA). Other metrics can
also be leveraged to automatically select behavior markers.

4.3 How to Distinguish Benign Anomalies and
Malicious Attacks?

The ultimate goal of CloudShield is to detect attacks, i.e., malicious
anomalies. Once an anomaly is detected, the next step is to determine
if it is a benign anomaly or a malicious attack. Without loss of
generality, we simplify the discussion by making the assumption
that a processor core runs one cloud workload, e.g., a stream server
or a web server. A malicious anomaly can be a known attack or a
zero-day attack. A benign anomaly can be benign programs that run

concurrently with the cloud workload, where their interference could
potentially cause false alarms. It could also be a stealthy attack that
looks like a benign program.

Note that the key difference between a cloud workload and a
benign program is that the cloud workload, as is commonly done,
is the one main task per cloud server, or per processor core, while
benign programs are relatively small programs that can be scheduled
on the same core if the main task (cloud workload) is low.

While anomaly detection systems typically fall short of detecting
benign versus malicious anomalies, Cloudshield can detect not just
anomalies, but also the subset of anomalies that are attacks. Specif-
ically, CloudShield builds two detectors, one is to identify known
benign programs, and the other is to identify attacks. Also, while
actual attack detection tends to be very domain-specific, our new
contribution is to show that it is possible to use a general framework
based on a pre-trained model to do attack detection. We are even
able to detect stealthy attacks and potential zero-day attacks.

5 CLOUDSHIELD
5.1 Overview
We show an overview of CloudShield in Figure 2. There are three
phases for learning and detecting anomalies and attacks in the cloud:
1) offline training and profiling, 2) online anomaly detection and
mitigation and 3) online attack versus benign program detection.

The offline training and profiling phase consists of four steps:
① constructing three sets of programs: normal cloud workloads,

known attacks, and certified benign programs. The cloud providers
select representative workloads. They also must access attack databases,
and they probably already have benign program certifications which
they can check or bring into a database of their own for this anom-
aly and attack detection system. A Certificate Validation Module is
responsible for verifying the certificates of the workload and benign
programs. The certificates are generated by trusted entities, e.g.,
companies that create these programs, and organizations or labs that
verify the correctness and security of the programs. The certificate
must contain the hash of the program binary and the public key
signature of the trusted entity.

② The cloud providers execute the workloads and programs in an
offline clean environment and collecting their behavior markers. A
Program Behavior Collection Module is designed for this.

③ Training a default program-behavior predictor model M in a
Training Module. The cloud providers generate the normal model for
their cloud environment themselves as setup for this anomaly-attack
detection system.

④ Calculating the corresponding REDs RDn, RDa, and RDb as
the reference Reconstruction Error Distributions (REDs) for normal
cloud workloads, known attacks, and benign programs, respectively.
We use the distribution RDn as the normal behavior of the processor
core running a cloud workload, while RDa and RDb are used to
further distinguish between known attacks and benign programs
when an anomaly is identified. Note that the cloud workload needs to
be paused before collecting HPCs and calculating REDs for attacks
and benign programs. The normal cloud workload detector, known
attack detector, and benign program detector are also computed.

The online anomaly detection and mitigation phase has two steps:
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Figure 2: CloudShield methodology for anomaly and attack detection.

⑤ An Online Detection Module collects runtime behavior markers
of each processor core in a cloud server from the Performance
Monitor Unit (PMU) in the host OS. These markers are input into
the pre-trained model M for the inference phase, to generate the
run-time observed RED D1.

⑥ Comparing the run-time RED D1 and the reference RED RDn.
If D1 does not follow the distribution of normal cloud workloads
RDn, an anomaly is detected and the cloud workload is paused to
avoid further security breaches.

Once an anomaly is detected, the online attack versus benign pro-
gram detection phase (step2 detection) is performed to distinguish
benign programs from known attacks. This phase has three steps:

⑦ Collecting behavior markers when the cloud workload is no
longer running. It is necessary to pause the cloud workload when
running the attack detector and the benign program detector to elim-
inate the interference from the cloud workload, which is usually
heavy. We observe that pausing the cloud workload can significantly
increase the detection accuracy. The new measurements are inferred
through the pre-trained model M and new RED D2 is gathered.

⑧ Comparing D2 to the distribution of known attacks RDa to
identify if the anomaly is caused by a known attack.

⑨ Comparing D2 to the distribution of certified benign programs
RDb to identify if the anomalous behavior is a false alarm. Note that
the steps ⑧ and ⑨ can be performed in parallel. As a complementary
component, the cloud provider can confirm that benign programs
are scheduled on this machine.

In the above discussion, we have assumed that a single pre-trained
model of normal cloud workloads is sufficient, and that different
known attacks can be detected with a single known attack detector,
and that all benign programs added to a cloud workload can be
identified with a single benign program detector. This significantly
simplifies the implementation of CloudShield, and we will show

that this results in excellent anomaly and attack detection in practice.
More cloud workloads, attacks, and benign programs can always be
added to the three sets of programs to retrain the model M and the
three detectors.

The CloudShield implementation consists of four modules: a
certificate validation module, a program behavior collection module,
a training module, and an online detection module. The servers can
share a set of the first three modules, as they are used during training
phase. Only the last module needs to run on each cloud server.

5.2 Pre-training Program Behavior Predictor
Feature selection. Modern processors usually provide various events
to be monitored by using hardware performance counters. However,
due to the limited number of hardware registers in the PMU, only a
few of them can be monitored at the same time. While round-robin
scheduling of HPC measurements is feasible, it increases overhead.
Therefore, it is important to select the appropriate events from all
possible events as behavior markers. We propose a principal com-
ponent analysis (PCA) based selection method to help determine
the events to monitor. Our key idea is the selected events should be
important to represent normal behavior.

Specifically, the principle component PCA1 can be represented
as a linear combination of all features. The coefficient of the cor-
responding HPC measurement represents the contribution of that
feature in the principal component. Formally,

PCA1 = ||xT w||2 (1)

=∑
i
|wi|2x2

i (2)

where x = (x1,x2...xn) is an HPC reading of n events. |wi| is the
coefficient of xi in the first principal component. It represents the
importance of event xi in the first principal component.
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We collect 34 HPC events from five representative cloud bench-
marks, i.e., ML training (PyTorch), stream server (FFserver), data-
base server (Mysql), web server (Nginx), and Hadoop MapReduce.
We collect the event measurements for an entire processor core, to
provide system-level monitoring, rather than just monitor a specific
process or thread. We observe that although the benchmarks are
different, they show consistency in the events’ importance.

We use ηi =
|wi|

∑ j |w j |
as the event importance for a workload. We

average η over the five representative benchmarks as the final impor-
tance score η of the corresponding event. We show the features with
η ≥ 1% in Table 1. We use the thirteen selected events throughout
the experiments. In fact, these are also the thirteen distinct events in
the top-10 events for the five cloud workloads.

Table 1: HPC features with η ≥ 1%.

Rank Event η Rank Event η

1 Instruction 0.267 8 BPU read 0.030
2 Stall during issue 0.189 9 DTLB write 0.025
3 Stall during retirement 0.178 10 Branch 0.023
4 Cycles 0.106 11 L1D read miss 0.020
5 Load 0.067 12 L1I read miss 0.018
6 DTLB read 0.043 13 Context switch 0.015
7 Store 0.037

Model selection. Recurrent Neural Network (RNN) and its vari-
ant, Long Short-Term Memory (LSTM), have become the popular
model for sequential data. To balance the model complexity and
its prediction power, in the proof-of-concept implementation, we
start from a single-cell LSTM as the behavioral model of the system.
We show that a simple single-cell LSTM model can already have
enough good accuracy. More complicated models can be used to
model additional normal workloads. An LSTM cell has three gates
that control information flow: the forget gate, the input gate, and the
output gate. LSTM automatically determines what information to
“remember” and “forget”.

Alternative models, e.g., Gated Recurrent Units (GRUs) [9] and
BERT [11], can also be used as behavioral models of the system.
As the main focus of this work is not to find the best model, but
to show the feasibility of using RED of HPCs to detect anomalies
in the cloud system, without loss of generality, we just show that
LSTM models are enough for this anomaly detection.
Model training. Our goal is to train a model that can capture the
predictable component of the behavior of a program. The program
behavior markers {Si}N

i=1 (in our case HPC events of cloud work-
loads), are obtained from a clean environment. N is the total number
of time frames collecting HPCs. In our experiments, each behavior
measurement St

i is a vector consisting of the thirteen monitored hard-
ware events. At time t, the deep learning model is trained to predict
St+1

i using behavior history [S1
i , ..., St

i ]. Intuitively, since {Si}N
i=1 are

normal behavior markers collected in the clean environment, the
loss penalizes the incorrect prediction of normal behavior. We train
this model to minimize the loss function with Stochastic Gradient
Descent (SGD).

5.3 RED Profiling
RED generation of cloud workloads. We generate a profile of the
normal cloud workloads in terms of reconstruction error distribution
(RED), illustrated as RDn in Figure 2. First, reference sequences of
the behavior measurement, R = [R1, ...,RT ′

], are collected in a clean
environment. For this cloud server setting, each time frame Ri is a
vector of thirteen dimensions (the number of monitored events) in
our experiment. Second, at time frame t, we use the trained model
to predict t +1 using the corresponding history behavior. We denote
the prediction as Pt+1. The reconstruction error is defined as:

E (t ) = Rt+1 −Pt+1 (3)

Each reconstruction error sample E (t ) is a vector of dimension n,
where n is the number of monitored events. We gather the prediction
errors of each cloud workload and define the overall distribution of
{E(1), E(2), E(3)...} from all workloads as RDn.
KDE profiling of cloud workload. We use Kernel Density Esti-
mation (KDE), a non-parametric estimation approach that better
handles high-dimensional data, to profile the high-dimensional dis-
tribution of reconstruction errors from reference samples, denoted
④-a in Figure 2. We use non-parametric estimation because the for-
mula of the RED of normal workloads is unknown, and its formula
can be too complex to assume. KDE represents the distribution from
elementary kernels. It assumes a small high probability area (Gauss-
ian in our implementation) within a bandwidth around the observed
samples, and sums them up as the probability distribution. Formally,
KDE is defined as:

f̂ (x) =
1

nb

n

∑
i=1

K (
x− xi

b
) (4)

where f̂ (x) is the estimated probability density. K (·) is a kernel
function, whose value drops rapidly outside a bandwidth b. xis are
the samples from the distribution, i.e., E(t) in our case. n is the total
number of samples.

In Figure 3, we show examples of reconstruction error distribu-
tion (RED) of normal cloud workloads (first five in green), benign
programs (next six in blue), and attacks (last nine in red). To illus-
trate the high-dimensional distribution, we calculate the magnitude
of REDs in Eq. 3 and observe that the normal cloud workloads, in
general, have the smallest REDs (distributions to the left). Figure
3 shows clear difference between the cloud workloads, the benign
programs, and the attacks. The cloud workloads have the smallest
REDs (leftmost). The REDs of different benign programs are dis-
tinct. Most of the benign programs have larger REDs than cloud
workloads, except the gpg-rsa program whose RED is similar to the
cloud workloads. Moreover, the REDs of all evaluated attacks are
to the right side, meaning larger reconstruction errors than cloud
workloads and benign programs.
Profiling for benign programs and known attacks. Similarly, we
profile the RED of the benign programs and known attacks. We
collect their behavior data in a clean execution environment from
the Program Behavior Collection Module. Interestingly, we observe
that it is not necessary to train another program behavior predictor
model for benign programs and attacks. The pre-trained one on cloud
workloads can be reused to profile the benign programs and known
attacks. We hypothesize that it is because pre-training on different
workloads improves the generalizability of the model, by suppressing
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Figure 3: Reconstruction error distribution (RED) of normal
cloud workloads (first five in green), benign programs (next six
in blue) and attacks (last nine in red).

potential overfitting. At last, two KDE estimations are performed on
the RED of known attacks and benign programs, shown as ④-b and
④-c in Figure 2, respectively.

We illustrate an example of kernel density estimation of benign
programs in Figure 4. To illustrate, we first use t-SNE [20] to map
the thirteen HPCs to a 2-D plane and build a KDE estimator of
benign programs (gcc, gpg, and libquantum) using the REDs from
the pre-trained model. The high-density regions (likely to be benign
programs) are colored red while the low-density areas (unlikely to be
benign programs) are colored blue. We plot three benign programs,
i.e., gcc (green square), gpg (green diamond) and libquantum (green
triangle) in Figure 4. We also depict four attacks, i.e., l3pp (red cross),
fr (red square), spectre v1 (red diamond), and buffer overflow (red
triangle), in Figure 4 and observe that they are all in the low-density
area, where the benign program detector can identify them as non-
benign programs. Figure 4 explains why KDE works, specifically
the benign programs form high-density clusters while the attacks are
outside the clusters.

5.4 Runtime Anomaly Detection and Mitigation
The online detection module is responsible for detecting anomalies
and distinguishing attacks and benign programs at runtime. A pro-
cessor core’s behavior, in terms of hardware event measurements, is
dynamically monitored at runtime.
Anomaly detection based on RED. Similar to the offline profiling
phase, the runtime gathered HPC sequences are sent through the pre-
trained model (⑤ in Figure 2) to obtain the runtime observed RED
D1. The likelihood of the observed reconstruction error following
the RED of normal cloud workloads (RDn) is computed using the

Figure 4: Illustration of kernel density estimation of benign pro-
grams. The high-density regions (likely to be benign programs)
are colored red while the low-density areas (unlikely to be be-
nign programs) are marked blue.

KDE normal workload detector ( f̂ (x) in Eq. 4) 1. If the likelihood
f̂ (x) is lower than a pre-defined threshold, i.e., the prediction error
does not follow the distribution of RDn, an anomaly is detected.

Based on the results of the anomaly detection, different response
actions can be taken. If no anomaly is detected, no further actions are
required. Once an anomaly is detected, CloudShield triggers differ-
ent responses (⑥ in Figure 2). First, the cloud workload running on
the machine is temporarily paused to avoid further damage. This also
eliminates the interference between the cloud workload and other
tasks that concurrently run (attacks or benign programs). Second,
access to the most security-critical data and resources is temporarily
turned off. Attacks against data confidentiality, e.g., side-channels,
can target these secret data. Thus, cutting access to the security-
critical data prevents these data from being leaked out. Third, the
known attack detector and benign program detector are woken up,
to identify if the anomaly is malicious (an attack) or benign (a false
alarm). This can further reduce false-alarm fatigue in practice, as
discussed below.

5.5 Distinguishing Benign Programs and Attacks
A detected anomaly can be caused by benign programs. Thus, Cloud-
Shield attempts to distinguish “benign anomalies” caused by benign
programs versus real attacks. As discussed in Section 5.4, the cloud
workload is paused once an anomaly is detected (⑥ in Figure 2).
Now the monitored core is possibly running attacks. Moreover, other
benign programs (can be a victim program) that concurrently run
with the attack may hide the attack and make identifying attacks
even harder. We will show CloudShield can detect an attack in both
scenarios, with and without benign programs running.
Attacks and benign programs identification. To distinguish the
attacks and benign programs, firstly, hardware events’ measurements
are monitored through the PMU after the main cloud workload is
switched off. Then the PMU sends the newly measured data (without
cloud workload) to the same pre-trained program behavior predictor
M for inference. Similar to anomaly detection, we compute the RED
D2 in the form of Eq. 3. The KDE attack detector (④-b) and the KDE
benign program detector (④-c) were loaded into the online detection

1Tree-based structures, e.g., KD tree, can be used to find the xis close to x and
accelerate the computation because the effect of xis outside the bandwidth b is negligible.
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module from the training module 2. The attack detector computes
the likelihood of the observed prediction errors following the RED
of known attacks (RDa), using Eq. 4. If a high likelihood is observed,
the attack detector reports an attack. Similarly, the benign program
detector computes the likelihood of the observed prediction error
following the RED of benign programs (RDb). If a high likelihood
is observed, the benign program detector reports a benign program.

We catagorize four classes of definite (known) attacks, benign pro-
grams, stealthy attacks, and potential zero day attacks. The definite
(known) attacks and benign programs have known patterns to the
defender, and they are used in the training of the attack and benign
program detector, respectively. The stealthy attacks are attacks that
have similar behavior to the benign programs, possibly by mimicing
the workflow of the benign programs. The zero-day attacks have
unknown patterns which may not be similar to the benign programs.
We map these four classes to the decisions of the two detectors, we
list the four possible final decisions in Table 2.

Table 2: Benign program and attack decisions and responses.

Known Attack
Detector

Benign Program
Detector Decision Response

Case 1 Y Y Stealthy attack Alarm (high priority)
Case 2 Y N Attack Alarm (high priority)
Case 3 N Y Benign program Resume cloud workload
Case 4 N N Zero-day attack or new benign programs Alarm (medium priority)

Case 1: The attack detector recognizes it as a known attack, and
the benign program detector recognizes it as a benign program. In
this case, CloudShield reports it as a stealthy attack where the attack
program hides by mimicking the behavior of a benign program.
Another possible scenario of this case is that a benign program,
which could be a victim program, is concurrently running with the
attack program. We will show in the experiments that attacks can
still be detected even when they run together with benign programs.
A high-priority alarm is raised.
Case 2: The attack detector recognizes it as an attack, and the
benign program detector does not report it as a benign program. This
case indicates clear attacks and a high-priority alarm is raised and a
detailed report is sent for inspection.
Case 3: The attack detector does not report it as an attack, and the
benign program detector recognizes it as a benign program. In this
case, the previously detected anomaly is caused by a benign program.
The cloud workload is resumed to execute and no alarm is raised.
Case 4: The attack detector does not report it as a known attack,
and the benign program detector does not report it as a benign
program. In this case, a potential zero-day attack or an unknown
benign program is possible. A medium-priority alarm is raised by
CloudShield. The cyber analysts can handle these alarms after the
high-priority alarms. In fact, in our experiments, we show that case
4 is very unlikely.
Response. Once an anomaly is detected (step 1), CloudShield has
already paused the normal cloud workload to shield it from the
attacks. Access to highly sensitive data, code, and resources can
also be denied, depending on the server’s security response policy.
If in the second step, an attack is detected, an alarm will be raised.

2Note that here we only need two KDE estimators, one for attacks and the other for
benign programs, rather than an individual detector for each attack or benign program.

Further responses can be taken to protect the system, and the code
and data on it. CloudShield can also stop all processes running on
the core. Meanwhile, CloudShield records the relative information
into logs for further investigation.
System update. We discuss possible system updates of Cloud-
Shield. Specifically, CloudShield can update itself if new types
of cloud workloads are added, new attacks are discovered or new
benign programs are certified. A new model has to be trained only
if new cloud workloads are added. For new attacks and benign pro-
grams, only the KDE detectors for attacks and benign programs need
to be updated. Detailed discussions can be found in Appendix A.1.

6 EVALUATION
6.1 Experimental Settings
Platform. We perform our evaluation of CloudShield on a server
equipped with 2 Intel Xeon E5-2667 CPUs, each with 6 physical
processor cores. Each core has a 32KB L1D (Level-1 Data) cache
and a 32KB L1I (Level-1 Instruction) cache. Each package of six
cores shares a 256KB L2 (Level-2) cache and a distributed last-level
cache of 15MB (2.5MB*6). The server has 64GB memory and a
2TB hard disk. The machine is also equipped with an Nvidia 1080Ti
GPU. The HPC values are collected every 10 milliseconds using
Perf [4] supplied by the Ubuntu 14.04.6.
Cloud workload benchmarks. We choose five representative cloud
benchmarks, as shown in Table 3.

Table 3: Cloud workload benchmarks.

Cloud workload Description

Web server (Nginx)
Serving 1000 remote connections to request webpages
using WRK benchmark [2]

Database server (Mysql) Performing 128 concurrent queries using SysBench [3]

Stream server (FFserver)
Streaming a MPEG video in real-time to a remote user
with FFserver and FFmpeg

ML training (Pytorch) Training an LSTM model using an Nvidia 1080Ti GPU
Hadoop Perform Terasort [5] using MapReduce

Evaluated attacks. We select nine representative runtime attacks
against cloud computing systems for evaluation (Table 4). The eval-
uated attacks are cache side-channel attacks, speculative execution
attacks, and buffer overflow attacks. The cache side-channel attacks
silently leak information. The four recently discovered speculative
execution attacks represent the main hardware resources exploited
by the different speculative attack variants. We also evaluate a repre-
sentative software attack, i.e., buffer overflow attack.

Table 4: Evaluated attacks.

Catagory Attack

Cache side-
channel attacks

L1 cache prime-probe attack (l1pp) [14]
L3 cache prime-probe attack (l3pp) [26]
Flush-reload (fr) [39]
Flush-flush (ff) [13]

Speculative
execution attacks

Speculative boundary bypass (spectre v1) [24]
Indirect branch mis-prediction (spectre v2) [24]
Meltdown (spectre v3) [25]
Speculative store bypass (spectre v4) [1]

Buffer overflow Stack overflow attack [37]



Benign programs. We choose representative benign programs from
the SPEC2006 benchmark suite [19]. The evaluated benign programs
cover a large scope of programs: crypto software (gpg-rsa), compiler
(gcc), file and video compression tools (bzip2, h264ref), scientific
computation (mcf, milc, namd, libquantum), statistics, and machine
learning (soplex, hmmer) and gaming (gobmk).
Data collection. Data were collected in different scenarios. To eval-
uate the first step, i.e., for detection, we collected data when ① only
the cloud workload is running; ② the cloud workload is running with
benign programs listed above; ③ the cloud workload is running with
the attacks listed above; and ④ the cloud workload is running with
both benign programs and attacks. To evaluate the second step, i.e.,
for detection of attacks and benign programs, which we do when
the cloud workload is not running, we collected data when ① only
an attack is running; ② only a benign program is running; and ③ an
attack is running together with a benign program. Due to the large
number of combinations of cloud workloads, attacks and benign
programs, we run each combination for six minutes on a server, and
split the data equally into training, validation and testing sets.
Metrics We first compute an anomaly score for each behavior
measurement and then use a threshold to determine False Positive
Rate (FPR) and False Negative Rate (FNR). An anomaly score is
−log( f̂ (x)), where f̂ (x) is the KDE density in Eq. 4. Low density
f (x) indicates a high anomaly score. The threshold of the cloud
workload detector is obtained such that 80% of the validation normal
measurements during the training phase are correctly classified as
normal (to avoid leakage, no attack data are used to construct the
normal cloud workload detector nor to determine the threshold). For
the benign program detector and attack detector, the threshold is
obtained such that the equal error rate (EER) is achieved, on the
validation set.

6.2 Overall: Anomaly+Attack Evaluation
As CloudShield first detects anomalies (step 1) and then identifies
attacks and benign programs (step 2), we first illustrate the end-
to-end (anomaly detection + attack detection) results in Table 5.
Separated results and analysis of each step are discussed in Section
6.3-Section 6.5.

We evaluate different window sizes: if the window size is w, in
step 1, w contiguous anomalous behavior marker measurements are
identified as an anomaly. Similarly, w contiguous behavior marker
measurements are collected before an attack or benign program can
be identified. For a specific cloud workload, we report the average
FPR for that cloud workload + each benign program. We report the
average FNR for that cloud workload + each attack + each benign
program we evaluated. A higher FPR increases the number of false
alarms, while a higher FNR increases the chance that an attack
will go undetected. Low rates of both are desired. We observe that
the CloudShield indeed has very low FNRs for all 5 workloads for
all window sizes - less than 0.3%, indicating excellent detection
accuracy and hence, excellent security. FPRs are slightly higher
but also less than 0.6%. When w=1, the webserver workload has
the highest FPR (0.51%), while stream server achieves the lowest
FPR (0.26%). For all five cloud workloads, the FPR decreases as
w becomes larger, however, the FNR increases accordingly. When
w = 100, FPR decreases to 0.13% (for stream server) and 0.24% (for

webserver). FNR increases to 0.09% and 0.19%. When w = 200,
FNR tends to exceed FPR for all five cloud workloads. Note that a
larger window size can increase the detection delays (evaluated in
Section 6.6). A window size of 5-10 should be sufficient.

Table 5: Quantitative end-to-end (anomaly detection + attack
detection) evaluation results.

ML training
(Pytorch)

Database 
(Mysql)

Stream server 
(FFserver)

Webserver 
(Nginx)

MapReduce
(Hadoop)

w FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

1 0.0034 0.0005 0.0033 0.0005 0.0026 0.0011 0.0051 0.0005 0.0032 0.0005 
3 0.0034 0.0005 0.0033 0.0005 0.0025 0.0012 0.0050 0.0005 0.0031 0.0005 
5 0.0033 0.0005 0.0032 0.0005 0.0025 0.0012 0.0049 0.0005 0.0031 0.0005 

10 0.0032 0.0005 0.0031 0.0005 0.0024 0.0013 0.0048 0.0005 0.0030 0.0005 
20 0.0030 0.0006 0.0029 0.0006 0.0023 0.0014 0.0045 0.0006 0.0028 0.0006 
50 0.0025 0.0007 0.0024 0.0007 0.0019 0.0017 0.0036 0.0007 0.0023 0.0007 

100 0.0016 0.0009 0.0016 0.0009 0.0013 0.0019 0.0024 0.0009 0.0015 0.0009 
200 0.0005 0.0011 0.0005 0.0011 0.0004 0.0025 0.0008 0.0011 0.0005 0.0011 

We compare the proposed CloudShield to four representative
anomaly detection methods in the literature, i.e., Isolation Forrest
(IF) [27], One-class SVM (OCSVM) [33], Local Outlier Factor
(LOF) [7], and Principal Component Analysis (PCA) [21]. We show
the end-to-end results in Table 6. For the existing anomaly detection
methods, we replace the pretrained model + KDE in steps 1 and
2 of CloudShield with the corresponding method. We average the
FPR and FNR across each combination of cloud workload, benign
program, and attack. We observe that, with w=5 or w=10, Cloud-
Shield achieves lower FPR and FNR compared to other methods.
Specifically, when w=5, the best FPR and FNR of existing methods
are 1.41% (OCSVM) and 6.95% (PCA), respectively, while Cloud-
Shiled has much lower (better) FPR of 0.34% and FNR of 0.06%.
Similar results are shown when w=10.

Table 6: Compare CloudShield to existing anomaly detection
methods.

False Positive Rate (FPR) False Negative Rate (FNR)

w=5

Isolation Forrest (IF) 0.1728 0.442
One-class SVM (OCSVM) 0.0141 0.1011
Local Outlier Factor (LOF) 0.0518 0.0956
PCA 0.0587 0.0695
CloudShield 0.0034 0.0006

w=10

Isolation Forrest (IF) 0.1539 0.416
One-class SVM (OCSVM) 0.01571 0.1031
Local Outlier Factor (LOF) 0.0516 0.0990
PCA 0.0519 0.1150
CloudShield 0.0033 0.0007

6.3 Step 1: Can CloudShield Detect Anomalous
Behavior in Realtime?

A key challenge for real-time anomaly detection is short or stealthy
attacks. Attacks can hide by switching between running and sleeping.
A good anomaly detection system should be able to capture the attack
once it is running. We evaluate CloudShield against such attacks and
show it can detect them almost immediately. We schedule each of
the nine attacks to run and then sleep for a random period (10s-40s)
before the next attack runs. The experiment is performed when the
ML training workload is running.

We show the attack scheduling and the anomaly scores output
(−log( f̂ (x)) in Eq. 4) by CloudShield in Figure 5. It is clear that once
an attack is running, possibly after sleeping, CloudShield captures
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it (indicated by a large anomaly score). Once the attack program’s
behavior is suspended, the anomaly score quickly goes back to a low
value. Therefore, the proposed CloudShield can detect anomalies in
real-time. We also observe that two last-level cache attacks, i.e., the
flush-flush attack (ff) and the LLC prime-probe attack (l3pp), and
two speculative execution attack variants, i.e., the spectre v2 and the
spectre v3, result in higher anomaly scores than the other attacks,
indicating their distinctive behavior.

l1pp Spectrev4 Spectrev1

Flush-
flush l3pp

BOF

Spectrev2
Spectrev3

Flush-
reload

0
(no attack)

1
(attack)

Figure 5: Real-time detection of anomalies. We schedule each
of the nine attacks to run for 10 seconds and sleep for a random
period of time (10-40s).

6.4 Step 2: Can CloudShield Detect Zero-day
Attacks?

We evaluate the anomaly detection (step 1) on the nine attacks,
including the four recently proposed speculative execution attacks.
Note that in the anomaly detection step, CloudShield is only trained
on the normal behavior of the cloud workloads, and has not seen
code or data of any of the nine attacks, so they are like zero-day
attacks to CloudShield in this experiment.

We consider the model predictions for the four scenarios:

(1) Normal workload
(2) Normal workload and a benign program running
(3) Normal workload and an attack running
(4) Normal workload, a victim program, and an attack running

We show quantitative results of anomaly detection (step 1) in
Table 7. We find that when only the normal workload is running
(scenario 1), CloudShield almost always correctly recognizes it as
normal (the first line) for the ML training, database, stream server,
and web server benchmarks with a 0.1%-0.5% false positive rate
(predict abnormal column). When MapReduce is running, Cloud-
Shield misrecognizes 1.7% of normal workloads as anomalous – still
a small level.

When a benign program is running concurrently with the cloud
benchmark (scenario 2), we observe that the results highly depend
on the cloud workload and the benign program. For example, the
GPG-RSA is recognized as normal with less than 1% false positive
rate in the database, web server, and MapReduce workloads. How-
ever, large false positives, i.e., 6.4% and 47.6% of the GPG-RSA,

Table 7: Results of anomaly detection (step 1) with different
cloud workloads.Anomaly detection (w=1), merged

ML training
(Pytorch) Database (Mysql) Stream server 

(FFserver) Webserver (Nginx) MapReduce
(Hadoop)

FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR
Cloud workload only 0.001 -- 0.001 -- 0.005 -- 0.001 -- 0.017 --

Cloud 
workload
+ Benign
program

gpg-rsa 0.476 -- 0.001 -- 0.064 -- 0.003 -- 0.003 --
gcc 0.780 -- 0.619 -- 0.791 -- 0.822 -- 0.382 --
mcf 0.549 -- 0.745 -- 0.485 -- 0.964 -- 0.877 --
libquantum 0.001 -- 0.399 -- 0.078 -- 0.909 -- 0.401 --

Cloud 
workload

+
Attack

l1pp -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
l3pp -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
fr -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
ff -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev1 -- 0.012 -- 0.000 -- 0.016 -- 0.000 -- 0.000
spectrev2 -- 0.005 -- 0.000 -- 0.003 -- 0.000 -- 0.000
spectrev3 -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev4 -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
buffer overflow -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000

Cloud 
workload

+
Benign 

program
+

Attack

l1pp + gpg-rsa -- 0.000 -- 0.000 -- 0.004 -- 0.000 -- 0.000
l3pp + gpg-rsa -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
fr + gpg-rsa -- 0.020 -- 0.000 -- 0.045 -- 0.000 -- 0.000
ff + gpg-rsa -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev1 + gpg-rsa -- 0.000 -- 0.000 -- 0.005 -- 0.000 -- 0.000
spectrev2 + gpg-rsa -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev3 + gpg-rsa -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev4 + gpg-rsa -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
bof+ gpg-rsa -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
l1pp + gcc -- 0.001 -- 0.000 -- 0.002 -- 0.000 -- 0.000
l3pp + gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
fr+ gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
ff+ gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev1 + gcc -- 0.000 -- 0.000 -- 0.001 -- 0.000 -- 0.000
spectrev2 + gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev3 + gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev4 +gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
bof + gcc -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
l1pp + libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
l3pp + libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
fr+ libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
ff+ libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev1+libquantum -- 0.031 -- 0.000 -- 0.028 -- 0.000 -- 0.000
spectrev2 + libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev3 + libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
spectrev4 +libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000
bof + libquantum -- 0.000 -- 0.000 -- 0.000 -- 0.000 -- 0.000

are observed in the stream server and ML training workloads, re-
spectively. These false alarms can cause false alarm fatigue. Thus it
requires the next step to further distinguish benign programs versus
malicious anomalies, and reduce the number of false alarms. Note
that CloudShield distinguishes certified benign programs from at-
tacks (step 2) to reduce false alarms after an anomaly is identified
(results discussed in Section 6.5).

In scenario 3, once an attack is running with the cloud workload, it
can be detected with zero false negatives in the database, web server,
and MapReduce workloads. For the ML training workload, the
Spectre v1 and v2 attacks cause 1.2% and 0.5% false-negative rates,
respectively. For the stream server workload, the Spectre v1 and v2
attacks introduce 1.6% and 0.3% false-negative rates, respectively.
These results show that CloudShield is capable of detecting zero-day
attacks, since the normal cloud workload detector in step1 has not
been trained with any attack.

We also evaluate scenario 4 where an attack program runs con-
currently with a benign or victim program and the cloud workload.
Similar to scenario 3, we observe that the attacks can be detected
with zero false negatives with the database, web server, and MapRe-
duce workloads. For the ML training workload, the worst case is
when spectre v1 and libquantum are running concurrently, the attack
is missed by 3.1%, slightly higher than scenario 3 where the spectre
v1 attack is running alone (1.2%). For the stream server workload,
the highest false-negative rate is 4.5% when a flush-reload attack is
executed with gpg-rsa. Next is when Spectre v1 and libquantum are
running with the stream server, the FNR is 2.8%. Although these
results from just step 1 for anomaly detection are very good for
not missing attacks (low FNRs), the FPRs in scenario 2 is not low
enough. Hence, we propose step 2, to detect benign anomalies from
real attacks.

Consider all four scenarios, in our experiment, 95.4% of the
detected anomalous behavior turns out to be actual attacks. This
leaves little room for an attacker to perform a DoS attack.



6.5 Can CloudShield Distinguish Benign
Anomalies from Attacks?

Anomalies can be caused by benign programs, i.e., benign anomalies.
Therefore, once an anomaly is detected, CloudShield takes the next
step to figure out whether it is a benign anomaly or an attack. As
shown earlier, CloudShield implements two detectors to identify
known attacks and certified benign programs, respectively. These
two detectors can reduce false alarms by 99.0%.

We show a real example of CloudShield reducing false alarms
by distinguishing known attacks and certified benign programs in
Figure 6. We run an attack (spectre v3) and a benign program (gcc),
both with the ML training workload. The periods ① and ③ indi-
cate that the attack is running, and the period ② means the benign
program is running. Figure 6 (a) illustrates the anomaly scores in
the anomaly detection step. We observe that while both attacks are
correctly identified (periods ① and ③), the beginning of gcc exe-
cution is incorrectly recognized as attacks (false alarms). Then the
ML training workload is paused and the behavior measurements are
re-collected as input to the two step 2 detectors. Figure 6 (b) shows
the result of the attack detector. High values indicate an attack and
low values mean no attack. It correctly identifies periods ① and ③ as
attacks, while ② is not an attack. Figure 6 (c) shows the result of the
benign program detector. High values represent a benign program
and low values indicate a program that is not in the set of certified
benign programs. We find that the certified benign program detector
reports high values in period ② (and idle periods), while the values
in periods ① and ③ are low (not certified benign programs). Jointly
considering the two detectors, CloudShield correctly determines that
② is a certified benign program, while ① and ③ are real attacks.

Certified benign
programNo attack

GCC

Meltdown 
(Spectre v3)

� � �

False 
positives

� � � � � �

(a) Anomaly detection (step 1)

(c) Certified benign program detection (step 2b)(b) Attack detection (step 2a)

Figure 6: An example of reducing false alarms by identifying
attacks and certified benign programs.

We show quantitative results of attacks and certified benign pro-
gram detection (step 2) in Table 8. We select eleven representative
benign programs from the SPEC benchmark suite and the same
nine attacks as in previous sections for evaluation. For the benign
program detection, we observe that six benign programs (gpg-rsa,
bzip2, namd, soplex, hmmer, and libquantum) can be recognized
correctly with no false alarms. The milc program introduces the
highest but acceptable FPR of 3.5%. Of this, 2.6% were identified
as stealthy attacks and 0.9% as zero-day attacks or unknown benign

programs. On average, 99.0% of the benign programs can be identi-
fied correctly, i.e., the false alarms raised by benign programs in the
anomaly detection is suppressed by 99.0%. Within the remaining
false alarms (1.0%), we observe that 0.6% are recognized as case
4 (zero-day attacks or unknown benign programs) which results in
a medium-priority alarm, and 0.4% are recognized as high-priority
attacks (case 1 and 2). For attack detection, we observe that all at-
tacks are correctly identified. A detailed analysis shows that 99.8%
of attacks are identified as high-priority attacks (case 2) and 0.2%
attacks are recognized as stealthy attacks.

We also consider a more difficult scenario where an attack is
running concurrently with a certified benign program. We show that
even if attack is spread out in an application, it can still be detected
by its behavior via HPCs. 99.9% of attacks are correcly identified
while 96.4% are identified as high-priority attacks (case 2). Detailed
analysis are shown in Appendix .

Table 8: Results of benign programs/attacks detection (step 2).

Pred benign 
(Case 3)

Pred attack
(Case 1,2,4)

Case 1
(stealthy 
attack)

Case 2
(attack)

Case 3
(benign)

Case 4
(0-day)

None None 1.000 0.000 0.000 0.000 1.000 0.000 

Benign 
programs

gpg-rsa 1.000 0.000 0.000 0.000 1.000 0.000 
bzip2 1.000 0.000 0.000 0.000 1.000 0.000 
gcc 0.971 0.029 0.000 0.000 0.971 0.029 
mcf 0.987 0.013 0.000 0.000 0.987 0.013 
milc 0.965 0.035 0.026 0.000 0.965 0.009 
namd 1.000 0.000 0.000 0.000 1.000 0.000 
gobmk 0.983 0.017 0.017 0.000 0.983 0.000 
soplex 1.000 0.000 0.000 0.000 1.000 0.000 
hmmer 1.000 0.000 0.000 0.000 1.000 0.000 
libquantum 1.000 0.000 0.000 0.000 1.000 0.000 
h264ref 0.980 0.020 0.000 0.000 0.980 0.020 
Average 0.990 0.010 0.004 0.000 0.990 0.006 

Attacks

l1pp 0.000 1.000 0.000 1.000 0.000 0.000 
l3pp 0.000 1.000 0.000 1.000 0.000 0.000 
fr 0.000 1.000 0.000 1.000 0.000 0.000 
ff 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev1 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev2 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev3 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev4 0.000 1.000 0.000 1.000 0.000 0.000 
bufferoverflow 0.000 1.000 0.021 0.979 0.000 0.000 
Average 0.000 1.000 0.002 0.998 0.000 0.000 

Attack and benign program detection (w=1)

Table 9: Results of zero-day (unknown) attacks in step 2.

Pred benign 
(Case 3)

Pred attack
(Case 1,2,4)

Case 1
(stealthy 
attack)

Case 2
(attack)

Case 3
(benign)

Case 4
(0-day)

Known 
Attack

l1pp 0.000 1.000 0.000 1.000 0.000 0.000 
l3pp 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev1 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev2 0.000 1.000 0.000 1.000 0.000 0.000 
bufferoverflow 0.000 1.000 0.021 0.979 0.000 0.000 

Unknown 
Attack

fr 0.000 1.000 0.000 0.999 0.000 0.001 
ff 0.000 1.000 0.000 0.000 0.000 1.000 
spectrev3 0.000 1.000 0.001 0.000 0.000 1.000 
spectrev4 0.000 1.000 0.000 0.999 0.000 0.001 

Zero-day attack detection in step 2. We conduct another exper-
iment by putting only L1 prime-probe (l1pp), LLC prime-probe
(l3pp), spectre v1, spectre v2, and buffer overflow attacks in the set
of known attacks. This means that the flush-reload (fr), flush-flush
(ff), spectre v3, and spectre v4 attacks are unknown zero-day attacks.
We show the known and zero-day attack detection results in Table 9.
We observe that CloudShield can still correctly recognize unknown
attacks. The flush-flush and spectre v3 attacks are classified as case
4 (zero-day attacks). The other two attacks, i.e., the flush-reload and
spectre v4 attacks, are detected as known attacks probably because
their behavior is similar to the known attacks.
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Necessity of the two-step method. We have also investigated de-
tecting attacks together with detecting anomalies in the first step,
when the cloud workloads are running. The benefit of doing this is
that the attacks can be identified more quickly. However, the down-
side of detecting attacks in the first step is that the attacks and cloud
workloads interfere with each other, making the behavior markers
collected in the first step not capable enough to identify the attacks.
Hence our two-steps method is much better.

6.6 Detection Latency and Overhead
Detection latency. The detection latency is defined as the period
from the time the attack starts running, to the time an attack alarm is
raised. We present the overhead of robust detection using more than
one set of behavior marker measurements, e.g., with a sequence of
w = 5 sets of measurements. The timeline for detecting an attack is
shown in Figure 7 (similar for attack and benign program detection).
tB denotes the time interval for collecting w behavior marker mea-
surement. tRED represents the time needed for computing the RED
by inferencing the pre-trained model. tKDE is the time to infer the
KDE detector. The computation of RED and KDE can overlap with
the HPC collection if w > 1 (Figure 7).
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Figure 7: Illustration of the timeline for anomaly detection.

Table 10 presents the detection latency when w =1, 5, 10, 50 and
100. As the HPCs are sampled every 10ms, tB=10ms when w=1. We
measure tRED and tKDE on the server. Specifically, the calculation
of RED (tRED) is performed on the GPU and the calculation of
KDE (tKDE ) is performed on the CPU of the server. The two overall
numbers in the parenthesis are detection time when there is no
anomaly (thus no step 2) and there is an attack, respectively. We
show that CloudShield can detect anomalies and identify the attacks
and benign programs in 32 to 112 milliseconds if w = 1 or w =
5. Considering the attack usually takes seconds to succeed, e.g.,
several encryption operations for side-channel attacks, this latency
can achieve our design goal of real-time detection. We suggest w=5
is sufficient.

Table 10: Detection latency (ms) versus window sizes.

(ms) Anomaly Detection Benign program/Attack detection Overall (no anomaly, attack)
tB tRED tKDE tB tRED tKDE

w=1 10.0 0.02 0.76 10.0 0.02 1.58 (10.78, 32.38)
w=5 50.0 0.02 0.76 50.0 0.02 1.58 (50.78, 112.38)

w=10 100.0 0.02 0.77 100.0 0.02 1.60 (100.79, 212.41)
w=50 500.0 0.02 0.78 500.0 0.02 1.62 (500.80, 1012.44)
w=100 1000.0 0.02 0.79 1000.0 0.02 1.65 (1000.81, 2012.48)

Performance overhead. We evaluate the performance overhead of
CloudShield. We use the benchmarks in Table 3. We use comple-
tion time as the metric for ML training and MapReduce, average

time per query for Database and Webserver, and processing time per
frame for Stream Server. All the metrics are normalized to the cloud
workload running without Cloudshield. Figure 8 reports the normal-
ized metrics without CloudShield (blue solid) and with CloudShield
running (orange dashed). Results are averaged over five runs). We
see that CloudShield only introduces a small performance overhead.
The maximum overhead is 6.3% for MapReduce and the minimum
is 0.5% for database. In our experiments, we observe that on average
CloudShield consumes 17.1% CPU time on the server.
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Figure 8: Performance overhead of CloudShield with different
cloud workloads.

6.7 Discussion: Evasion Attacks
Previous work [32] revealed that attackers can effectively generate
adversarial examples in the black-box setting to evade deep learning
based intrusion detection systems. However, generating adversarial
examples against our system is generally harder. First, our system
monitors the dynamic behavior of a program. Generating dynamic
adversarial examples that can both interact with other programs
and escape detection in the black-box setting remains challenging.
Second, the behavior markers monitored in our system are HPC
measurements. As HPC measurements highly depend on the context
of the executing environment, this introduces an extra obstacle for
the attacker to construct the same execution environment when
generating evasion adversarial examples. How to design and develop
efficient evasive attacks and how to detect these attacks are worth
exploring as future work.

7 PAST WORK
Recent work used deep learning for anomaly detection. Sucheta
et al.[8] and Malhotra et al.[28] proposed LSTM for sequential
anomaly detection. However, their methods only examined single
prediction errors, rather than the distribution. We show that the recon-
struction error distribution is more effective and robust in anomaly
detection. He et al.[18] leveraged LSTM for anomaly detection in
critical infrastructures. Different from this work, we detect not only
anomalous behavior, but also which of these anomalous behavior are
real or potential attacks (and which are benign or false alarms). Du
et al.[12] updated anomaly detection model through unlearning. As
stated in their work, unlearning may introduce a higher false-positive
rate. In contrast, CloudShield significantly reduces false positives by
distinguishing benign and malicious anomalies.

Another line of research detected specific attacks in the cloud. For
example, Zhang et al.[40] developed CloudRadar for side-channel
attack detection in the cloud using hardware performance counters.
Guo et al.[15] detected cache side-channel leakage with symbolic



execution. Wang et al.[34] leveraged symbolic execution to detect
speculative execution attacks. However, each of these detected a
specific type of attack, unlike our work, which covers a broader
scope of attacks, including zero-day attacks.

8 CONCLUSION
In this paper, we proposed CloudShield, a real-time anomaly and
attack detection system for cloud computing. CloudShield lever-
ages a single pre-trained deep learning model and leverages the
reconstruction error distribution (RED) of hardware performance
counters to model the normal behavior of a system using kernel den-
sity estimation (KDE). It is worth noting that CloudShield explicitly
takes false-alarm reduction into account, a critical problem in anom-
aly detection systems. Once an anomaly is detected, CloudShield
automatically distinguishes benign programs, known attacks, and
zero-day attacks by investigating the different attack and benign pro-
gram reconstruction error distributions, using the pre-trained model
and kernel density estimators.

We evaluate CloudShield on various cloud workloads, attacks,
and benign programs. Experimental results show that CloudShield
can reliably detect various attacks in real-time with high accuracy
and very low FNR and FPR. Moreover, experiments show that it
can correctly identify unknown zero-day attacks and stealthy attacks
that are running concurrently with benign programs. CloudShield
achieves very low 0.3% FNR and 0.6% FPR for overall anomaly-
attack detection. Especially, we find that CloudShield can detect the
recently proposed speculative execution attacks in 32-112ms, and it
can reduce false alarms by up to 99.0%.
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A APPENDIX
A.1 Detect attacks concurrently running with

benign programs
We consider a more difficult scenario where an attack is running
concurrently with a certified benign program. We show that even
if attack is spread out in an application, it can still be detected by
its behavior via HPCs. We run three benign programs: gpg-rsa, gcc,
and libquantum with the nine evaluated attacks in Table 11. First, on
average, 99.9% of attacks when they are concurrently running with
benign programs, are correctly recognized as attacks. A detailed
analysis shows that, when an attack program is running concurrently
with a benign program, 96.4% are identified as high-priority attacks
(case 2), 3.1% are recognized as high-priority stealthy attacks (case
1), only 0.4% are classified as medium-priority zero-day attacks
(case 4). These results show that CloudShield can still detect attacks
even if they hide in benign programs.

Table 11: Results of benign programs/attacks detection (step 2),
when attacks and benign programs run concurrently.

Pred benign 
(Case 3)

Pred attack
(Case 1,2,4)

Case 1
(stealthy 
attack)

Case 2
(attack)

Case 3
(benign)

Case 4
(0-day)

l1pp + gpg 0.000 1.000 0.241 0.746 0.000 0.013 
l3pp + gpg 0.000 1.000 0.026 0.974 0.000 0.000 
fr + gpg 0.000 1.000 0.117 0.883 0.000 0.000 
ff + gpg 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev1 + gpg 0.000 1.000 0.000 0.999 0.000 0.000 
spectrev2 + gpg 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev3 + gpg 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev4 + gpg 0.000 1.000 0.000 0.955 0.000 0.045 
bufferoverflow + gpg 0.000 1.000 0.000 1.000 0.000 0.000 
l1pp + gcc 0.000 1.000 0.000 1.000 0.000 0.000 
l3pp + gcc 0.013 0.987 0.003 0.970 0.013 0.014 
fr + gcc 0.000 1.000 0.044 0.956 0.000 0.000 
ff + gcc 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev1 + gcc 0.000 1.000 0.017 0.983 0.000 0.000 
spectrev2 + gcc 0.000 1.000 0.031 0.969 0.000 0.000 
spectrev3 + gcc 0.000 1.000 0.000 0.973 0.000 0.027 
spectrev4 + gcc 0.000 1.000 0.042 0.958 0.000 0.000 
bufferoverflow + gcc 0.000 1.000 0.049 0.951 0.000 0.000 
l1pp + libquantum 0.000 1.000 0.000 1.000 0.000 0.000 
l3pp + libquantum 0.000 1.000 0.088 0.908 0.000 0.004 
fr + libquantum 0.000 1.000 0.051 0.949 0.000 0.000 
ff + libquantum 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev1 + libquantum 0.005 0.995 0.037 0.954 0.005 0.004 
spectrev2 + ibquantum 0.000 1.000 0.000 1.000 0.000 0.000 
spectrev3 + libquantum 0.000 1.000 0.000 0.992 0.000 0.008 
spectrev4 + libquantum 0.000 1.000 0.035 0.965 0.000 0.000 
bufferoverflow + libquantum 0.000 1.000 0.059 0.940 0.000 0.001 
Average 0.001 0.999 0.031 0.964 0.001 0.004 

Attack and benign program detection (w=1)

A.2 Detailed discussion about system update
New types of cloud workloads. The commonly used cloud work-
loads in practice share common characteristics [22, 29], thus this
re-training process only needs to be performed when a new type
of cloud workload is added. This kind of update is not frequent.
Moreover, the whole update procedure can be performed during low
usage time. CloudShield loads the updated models and detectors to
the processor cores.
New certified benign programs. Update of new certified benign
programs is relatively lightweight, compared to cloud workload up-
date, because the pre-trained model does not need to change. Cloud-
Shield then executes the new benign program, collects its behavior
measurements in a clean execution environment, and calculate the
REDs. As shown in the formula of KDE estimator (Eq. 4), the esti-
mated likelihood f̂ (x) is summed over all reference prediction errors
xi. Therefore, CloudShield only needs to append the new prediction

errors of the new certified program to the existing prediction errors
to form the new RED.
New discovered attacks. This follows the same procedure of updat-
ing certified benign programs. It is also lightweight as the pretrained
model does not need to be updated.
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