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Abstract. Deep neural networks for medical images are extremely vul-
nerable to adversarial examples (AEs), which poses security concerns on
clinical decision-making. Recent findings have shown that existing med-
ical AEs are easy to detect in feature space. To better understand this
phenomenon, we thoroughly investigate the characteristic of traditional
medical AEs in feature space. Specifically, we first perform a stress test
to reveal the vulnerability of medical images and compare them to nat-
ural images. Then, we theoretically prove that the existing adversarial
attacks manipulate the prediction by continuously optimizing the vulner-
able representations in a fixed direction, leading to outlier representations
in feature space. Interestingly, we find this vulnerability is a double-edged
sword that can be exploited to help hide AEs in the feature space. We
propose a novel hierarchical feature constraint (HFC) as an add-on to
existing white-box attacks, which encourages hiding the adversarial rep-
resentation in the normal feature distribution. We evaluate the proposed
method on two public medical image datasets, namely Fundoscopy and
Chest X-Ray. Experimental results demonstrate the superiority of our
HFC as it bypasses an array of state-of-the-art adversarial medical AEs
detector more efficiently than competing adaptive attacks. Our code is
available at https://github.com/qsyao/Hierarchical Feature Constraint.
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1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial examples (AEs) [35].
AEs are maliciously generated by adding human-imperceptible perturbations
to clean examples, compromising a network to produce the attacker-desired
incorrect predictions [6]. The adversarial attack in medical image analysis is
disastrous as it can manipulate patients’ disease diagnosis and cause serious
subsequent problems. More disturbingly, recent studies have shown that DNNs
for medical image analysis, including disease diagnosis [9,32], organ segmenta-
tion [17,18,20,21,29], and landmark detection [40,41,43,44], are more vulnerable
to AEs than natural images.

On the other hand, recent defenses [22,25] have shown that medical AEs
can be easily detected in feature space. We plot the 2D t-SNE [26] in Fig. 1 to
illustrate the differences between clean and adversarial features from the penul-
timate layer of a well-trained pneumonia classifier, revealing that adversarial
attacks move the deep representations from the original distribution to extreme
outlier positions. As a result, a defender can easily take advantage of this char-
acteristic to distinguish AEs.

ResNet-50 Prediction:Label: Pneumonia

Adversarial  
Detector

AEs-BIM

Normal

BIM
Clean

Fig. 1. We craft AEs by the iterative basic method (BIM) [16] to manipulate the
prediction and visualize the penultimate layer’s features of the adversarial and clean
examples by 2D t-SNE.

Given this phenomenon, two key questions are investigated in this paper.
The first one is: What causes medical AEs easier to be detected, compared to
AEs of natural images? To better understand this, we conduct both empirical
and theoretical analyses. Firstly, we discover that medical features are more vul-
nerable than natural ones in a stress test, which aims to change the features
by the adversarial attack. Then, we theoretically prove that to generate med-
ical AEs, the adversarial features are pushed in a consistent direction towards
outlier regions in the feature space where the clean features rarely reside. In
consequence, medical adversarial features become outliers.

The second question is: Can we hide a medical AE from being spotted in
the feature space? A representative adaptive attack selects a guide example
and forces the AE feature to be close to the guide feature [33]. However, this
does not directly apply to medical AES. Different medical images have different
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backgrounds and lesions, making it difficult to manipulate the AE features to
be the same as the guide one in all layers within limited perturbation. To hide
the adversarial representation at a low price, we propose a novel hierarchical
feature constraint (HFC) as an add-on term, which can be plugged into existing
white-box attacks. HFC first models the normal feature distributions for each
layer with a Gaussian mixture model, then encourages the AEs to move to the
high-density area by maximizing the log-likelihood of the AE features.

We perform extensive experiments on two public medical diagnosis datasets
to validate the effectiveness of HFC. HFC helps medical AE bypass state-of-the-
art adversarial detectors, while keeping the perturbations small and unrecogniz-
able to humans. Furthermore, we demonstrate that HFC significantly outper-
forms other adaptive attacks [1,2,33] on manipulating adversarial features. Our
experiments support that the greater vulnerability of medical represen-
tations allows an attacker more room for malicious manipulation.

Overall, we highlight the following contributions:

– We investigate the feature space of medical images and shed light on why
medical AEs can be more easily detected, compared with those of natural
images.

– We propose a hierarchical feature constraint (HFC), a novel plug-in that can
be applied to existing white-box attacks to avoid being detected.

– Extensive experiments validate the effectiveness of our HFC to help existing
adversarial attacks bypass state-of-the-art adversarial detectors simultane-
ously with small perturbations.

2 Related Work

Preliminaries. Given a clean image x with its label y ∈ [1, 2, . . . , Y ] and a DNN
classifier h, the classifier predicts the class of the input example y′ via:

y′ = arg max
k

p(k|x) ≡ exp(lk(x))
∑K

j=1 exp(lj(x))
. (1)

where the logits lk(x) (with respect to class k) is given as lk(x) =
∑N

n=1 wnk ∗ zn(x) + bk, in which zn(x) is the nth activation of the penultimate
layer that has N dimensions; wnk and bk are the weights and the bias from the
final dense layer, respectively.

Adversarial Attack. A common way is to manipulate the classifier’s prediction
by minimizing the classification error between the prediction and target class c,
while keeping the AE xadv within a small ε-ball of the Lp-norm [27] centered at
the original sample x, i.e., ‖xadv −x‖p ≤ ε. In this paper, we focus on typical L∞
adversarial attacks, which are most commonly used due to its consistency with
respect to human perception [27]. The existing L∞ approaches can be categorized
into two parts. The first one is gradient-based approaches, such as the fast gradi-
ent sign method (FGSM) [10], basic iterative method (BIM) [16], the momentum
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iterative method (MIM) [6] and projected gradient descent (PGD) [27]. BIM
computes AE as follows:

x∗
0 = x; x∗

t+1 = Πε(x∗
t − α · sign(∇xJ(h(x∗

t ), c))). (2)

where J is often chosen as the cross-entropy loss; ε is the L∞ norm bound; α is
the step size; and Π(·) is the project function. Differently from BIM, PGD use a
random start x0 = x + Ud(−ε, ε), where Ud(−ε, ε) is the uniform noise between
−ε and ε.

The second category is optimization-based methods, among which one of the
representative approach is the Carlini and Wanger (CW) attack [3]. According
to [27], the L∞ version of CW attack can be solved by using the following
objective function:

Ĵ = max(lc(x∗
t ) − lymax �=c(x∗

t ),−κ). (3)

where lc is the logits with respect to the target class; lymax �=c is the maximum
logits of the remaining classes; and κ is a parameter managing the confidence.

Adversarial Defenses. Various proactive defenses [12,36] have been proposed
to defend adversarial attacks, such as feature squeezing [39], distillation net-
work [31], JPEG compression [7], gradient masking [30]. Per [5], the adversarial
training [10,27,38] is the most robust defense, which augments the training set
with AEs but consumes too much training time. However, these defenses can
be bypassed either completely or partially by adaptive attacks [1,2,37]. Differ-
ent from the challenging proactive defense, reactive defenses have been devel-
oped to detect AEs from clean examples with high accuracy [42]. For exam-
ple, learning-based methods (e.g., RBF-SVM [23], DNN [28]) train a decision
boundary between clean and adversarial features, while anomaly-detection based
methods directly reject the outlier feature of the AEs. Specifically, kernel density
estimation (KDE) [8] and multivariate Gaussian model (MGM) [22] modeled the
normal feature distribution. Local intrinsic dimensionality (LID) [24] character-
ized the dimensional properties of the adversarial subspaces. The degree of the
outlier was measured by Mahalanobis distance (MAHA) [19]. Especially, medi-
cal AEs were proven to be easy to detect with nearly 100% accuracy by these
approaches [22,24].

3 Why Are Medical AEs Easy to Detect?

Vulnerability of Representations. A stress test is performed to evaluate the
vulnerability of the features of medical and natural images. Specifically, we aim
to manipulate the features as much as possible by adversarial attacks. In the
test, we decrease (↓) and increase (↑) the features by replacing the loss function
J in BIM (Eq. 2) by J∗

↓ = mean(f l(x)) and J∗
↑ = −mean(f l(x)), respectively,

where f l(x) is the feature from the lth activation layer. We execute the stress
test on the medical image dataset (Fundoscopy [13]) and natural image dataset
(CIFAR-10 [15]). The results in Table 1 demonstrate that the features of the
medical images can be altered more drastically, i.e., the medical image rep-
resentations are much more vulnerable than natural images.
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Table 1. Comparison of the robustness between medical images and natural images.
We calculate the mean values of the activation layers from ResNet-50 before and after
the adversarial attacks. The stress test uses BIM with perturbations under the con-
straint L∞ = 8/256.

Dataset Fundoscopy CIFAR-10

Layer index 36 45 48 36 45 48

Normal .0475 .1910 .3750 .0366 .1660 .1900

Adversarial (↓) .0322 .0839 .0980 .0312 .1360 .1480

Adversarial (↑) .0842 .7306 2.0480 .0432 .2030 .2640

Difference (↓) .0153 .1071 .2770 .0054 .0300 .0420

Difference (↑) .0367 .5396 1.6730 .0066 .0370 .0740

Consistency of Gradient Direction. To investigate how the feature vulnera-
bility can be exploited by adversarial attacks, we then focus on the loss function
and the corresponding gradient on the final logits output lk(x). In each iteration
of the L∞ attack introduced above, J and Ĵ increase the logits of the target class
and decrease the others simultaneously. As a result, gradients point to a similar
direction across iteration, which will be back-propagated according to the chain
rule.

Theorem 1. Consider a binary disease diagnosis network and its representa-
tions from the penultimate layer, the directions of the corresponding gradients
are fixed during each iteration under adversarial attack.1

Fig. 2. (a) The similarity between the change values (under adversarial attack) from
the penultimate layer and (wi0−wi1). (b)The similarity of the changes of features from
the penultimate layer between different attacks and the different iterations from basic
iterative method (BIM).

Implication. The partial derivative of cross-entropy loss J with respect to the
activation value zi of i-th node in the penultimate layer is computed as:

∇zi
J(h(x), y1) = (1 − p1)(wi0 − wi1), (4)

1 We provide the proof in the supplementary material.
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where p1 denotes the probability of class 1 and wij denotes the weight between
i-th node in penultimate layer and j-th node in the last layer. Accordingly, the
activation zi with larger wi0 − wi1 will increase more (guided by the gradient)
under attack. We plot the similarity between the value changes and wi0 − wi1

in Fig. 2(a). Similar conclusions can be derived for other attacks. As shown in
Fig. 2(b), the features are pushed toward a similar direction during
different iterations of different attacks.

4 Adversarial Attack with a Hierarchical Feature
Constraint

We investigate the strategies that the attackers can leverage to bypass detec-
tion. Our key intuition is to exploit the vulnerability of medical features in the
opposite way, i.e., pushing and hiding it in the distribution of normal medical
features.

Modeling the Distribution of Normal Features. We model the distribution
of normal features using a Gaussian mixture model (GMM).

p(f l(x)) =
K∑

k=1

πkN (f l(x)|μk, Σk), (5)

where p is the probability density of sample x in the target class c; f l(·) denotes
the feature of the lth activation layer; πk is the mixture coefficient subject to∑K

k=1 πk = 1; μk and Σk are the mean and covariance matrix of the k-th Gaus-
sian component in the GMM. These parameters are trained by the expectation-
maximization (EM) algorithm [4] on the normal features belonging to the target
class c.

Hierarchical Feature Constraint (HFC). We propose a hierarchical fea-
ture constraint as a simple-yet-effective add-on that can be applied to existing
attacks to avoid being detected. First, we compute the log-likelihood of the AE
feature under the distribution of normal features. Specifically, for a given input
x, we separately compute the log-likelihood of an AE feature relative to each
component and find the most likely Gaussian component:

k′ = arg max
k

ln(πkN (f l(x)|μk, Σk)). (6)

To hide the adversarial representation, we maximize the log-likelihood of this
chosen component. Conceptually, it encourages adversarial features in the high-
density regions of the distribution of normal features. Then we encourage hiding
in all DNN layers. The hierarchical feature constraint induces a loss (JHFC)
that is formulated as Eq. 7. It can be used as an add-on to existing attacks
by directly adding JHFC to any original attack object function Joriginal, i.e.,
J = Joriginal + JHFC.

JHFC =
L∑

l=1

λl

2
(f l(x) − μl

k′)	(Σl
k′)−1(f l(x) − μl

k′), (7)
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where λl weights the contribution of constraint in layer l. The pseudo-code of
the adversarial attack boosted with HFC can be found in supplemental material.

5 Experiments

5.1 Setup

Datasets. Following the literature [9], we use two public datasets on typi-
cal medical disease diagnosis tasks. The first one is the Kaggle Fundoscopy
dataset [13] on the diabetic retinopathy (DR) classification task, which con-
sists of 3,663 fundus images labeled to one of the five levels from “no DR”
to “mid/moderate/severe/proliferate DR”. Following [9], we consider all fun-
doscopies with DR as the same class. The other one is the Kaggle Chest X-
Ray [14] dataset on the pneumonia classification task, which consists of 5,863
X-Ray images labeled with “Pneumonia” or “Normal”. We split both datasets
into three subsets: Train, AdvTrain and AdvTest. For each dataset, we randomly
select 80% of the samples as Train set to train the DNN classifier, and treat the
left samples as the Test set. The incorrectly classified (by the diagnosis network)
test samples are discarded. Then we use 70% of the samples (AdvTrain) in the
Test set to train the adversarial detectors and evaluate their effectiveness with
the remaining ones (AdvTest).

DNN Models. We choose the ResNet-50 [11] and VGG-16 [34] models pre-
trained on ImageNet. Both models achieve high Area Under Curve (AUC) scores
on Fundoscopy and Chest X-Ray datasets: ResNet-50 achieves 99.5% and 97.0%,
while VGG-16 achieves 99.3% and 96.5%, respectively.

Adversarial Attacks and Detectors. Following [25], we choose three repre-
sentative attacks, i.e., BIM, PGD and CW, against our models. For the adversar-
ial detectors, we use kernel density (KD) [8], bayesian uncertainty (BU) [8], local
intrinsic dimensionality (LID) [24], Mahalanobis distance (MAHA) [19], RBF-
SVM [23], and deep neural network (DNN) [28]. The parameters for KD, LID,
BU and MAHA are set per the original papers. For KD, BU, and RBF-SVM,
we extract features from the penultimate layers. For DNN, we train a classifier
for each layer and ensemble by summing up their logits.

Metrics. We choose three metrics to evaluate the effectiveness of the adversar-
ial detector and the proposed HFC bypassing method: 1) True positive rate at
90% true negative rate (TPR@90): The detector will drop 10% of the normal
samples to reject more adversarial attacks; 2) Area Under Curve (AUC) score;
3) Adversarial accuracy (Adv. Acc): The success rate of the targeted adversarial
attack against diagnosis network.

Hyperparameters. We set2 K = 64 and 1 for Fundoscopy and Chest X-Ray
datasets, respectively. For the lth layer, we compute the mean value of each

2 The hyperparameter analysis can be found in the supplementary material.
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channel separately, and set λl to 1
Cl

, where Cl is the number of channels. As tiny
perturbations in medical images can cause drastic increase in the loss [25], we
set α = 0.02/256 and T = 2ε/α.

Table 2. The point-wise performances of HFC. The metrics scores on the left and right
of the slash are the performances (%) of the adversarial detectors under the attack
without and with HFC, respectively. All of the attacks are evaluated on ResNet-50
with constraint L∞ = 1/256.

Fundoscopy BIM (Adv. Acc = 99.5) PGD (Adv. Acc = 99.5) CW (Adv. Acc = 99.5)

AUC TPR@90 AUC TPR@90 AUC TPR@90

KD 99.0/74.2 96.8/20.5 99.4/73.4 98.6/13.2 99.5/74.7 99.1/19.6

MAHA 99.6/6.4 99.5/0.0 100/4.2 100/0.0 99.8/33.0 99.5/0.0

LID 99.8/78.3 100/40.6 99.6/73.2 98.6/35.5 98.8/73.4 97.7/33.3

SVM 99.5/28.6 99.1/0.0 99.8/23.1 99.5/0.0 99.8/27.0 99.5/0.0

DNN 100/60.0 100/12.8 100/58.6 100/8.2 100/62.6 100/15.1

BU 58.9/37.4 9.1/0.0 61.9/35.9 9.1/0.0 93.0/32.8 73.1/5.0

Chest X-Ray BIM (Adv. Acc = 90.9) PGD (Adv. Acc = 90.9) CW (Adv. Acc = 98.9)

AUC TPR@90 AUC TPR@90 AUC TPR@90

KD 100/73.1 100/6.8 100/82.3 100/50.5 99.2/71.5 98.4/15.7

MAHA 100/0.0 100/0.0 100/0.0 100/0.0 100/22.4 100/0.0

LID 100/48.6 100/1.8 100/49.1 100/1.5 99.2/64.5 98.4/14.4

SVM 100/16.7 100/6.9 100/5.8 100/0.0 100/21.2 100/0.0

DNN 100/31.8 100/0.7 100/33.7 100/0.0 100/61.6 100/5.2

BU 49.9/26.1 19.2/0.0 49.2/26.2 22.7/0.0 98.3/26.2 94.8/0.0

5.2 Experimental Results

Bypassing Adversarial Detectors. We compare the performances of the
existing adversarial attacks with and without HFC on different DNN classifiers,
datasets, and perturbation constraints. The visualization in Fig. 3(a) shows that
HFC successfully moves the AE feature (orange) from outlier regions to the
regions (cyan) where normal features (purple) reside. Quantitative results in
Table 2 show that the HFC boosts all evaluated adversarial attacks to bypass
all evaluated detectors simultaneously, with high accuracy and a small pertur-
bation constraint L∞ = 1/256. Furthermore, as shown in Fig. 3(b), a larger per-
turbation budget provides HFC more room to manipulate the representations,
compromising the detectors more drastically (as the dotted lines decrease).

Comparison to Other Adaptive Attacks. We compare the proposed HFC
to other adaptive attacks designed to manipulate the deep representations and
bypass the detectors: 1) Generate AEs with internal representation similar to
a random guide image [33]; 2) Choose a guide image with its representation
closest to the input [33]; 3) Minimize the loss terms of KDE and cross-entropy
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Fig. 3. (a)Visualization of 2D t-SNE of clean and adversarial features generated from
BIM and HFC, extracted from ResNet-50 on Chest X-Ray. (b) The AUC scores in the
solid lines and dotted lines are the performances of the adversarial detectors against
BIM with and without HFC.

simultaneously [2]; 4) Minimize the loss term of LID and cross-entropy at the
same time [1]. As shown in Table 3, our proposed HFC bypasses the five detectors
and greatly outperforms other competitive adaptive attacks.

Table 3. AUC scores (%) of the proposed HFC and other adaptive attacks. The AEs
are generated on ResNet-50 under constraint L∞ = 1/256.

Fundoscopy KD MAHA LID SVM DNN Chest X-Ray KD MAHA LID SVM DNN

Random 75.1 86.1 91.7 48.2 93.7 Random 77.0 64.0 91.0 13.0 79.3

Closest 77.0 64.0 91.0 13.0 79.3 Closest 80.1 38.3 71.3 9.9 87.7

KDE 51.6 86.5 90.9 45.3 95.0 KDE 58.2 66.9 71.7 15.3 95.6

LID 87.6 85.4 93.4 61.2 96.2 LID 84.0 66.6 77.1 28.6 96.6

HFC 74.2 6.4 78.3 28.6 60.0 HFC 70.8 0.0 53.6 16.7 32.6

Table 4. The performance of BIM w/ and w/o HFC under the semi-white-box setting.
The AEs are generated under constraint L∞ = 4/256. AUC scores (%) are used as
metrics.

DNN model Fundoscopy KD MAHA LID SVM DNN Adv. Acc

ResNet-50 BIM 98.7 100.0 99.5 92.1 100.0 83.2

BIM HFC 78.0 9.1 68.0 16.9 43.8 68.2

VGG-16 BIM 72.3 89.6 81.5 48.1 95.2 88.6

BIM HFC 50.9 18.2 64.6 28.8 16.7 73.2

Semi-white-box Attack. We evaluate the proposed method in a more difficult
scenario: only the architecture information of DNN models is available. The
attacker tries to confuse the victim model and bypass its adversarial detectors
simultaneously, without knowing model parameters. The results in Table 4 show
that our HFC can help BIM compromise most of the detectors and manipulate
the DNN models, which poses more disturbing concerns to the safety of DNN-
based diagnosis networks.
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6 Conclusion

In this paper, we investigate the characteristics of medical AEs in feature space.
A stress test is performed to reveal the greater vulnerability of medical image
features, compared to the natural images. Then we theoretically prove that exist-
ing adversarial attacks tend to alter the vulnerable features in a fixed direction.
As a result, the adversarial features become outliers and easy to detect. How-
ever, an attacker can exploit this vulnerability to hide the adversarial features.
We propose a novel hierarchical feature constraint (HFC), a simple-yet-effective
add-on that can be applied to existing attacks, to avoid AEs from being detected.
Extensive experiments validate the effectiveness of HFC, which also significantly
outperforms other adaptive attacks. It reveals the limitation of the current meth-
ods for detecting medical AEs in the feature space. We hope it can inspire more
defenses in future work.
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38. Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P.:
Ensemble adversarial training: attacks and defenses. In: ICLR (2018)

39. Xu, W., Evans, D., Qi, Y.: Feature squeezing: detecting adversarial examples in
deep neural networks. In: Network and Distributed System Security Symposium
(2017)

40. Yao, Q., He, Z., Han, H., Zhou, S.K.: Miss the point: targeted adversarial attack on
multiple landmark detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS,
vol. 12264, pp. 692–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-59719-1 67

41. Yao, Q., Xiao, L., Liu, P., Zhou, S.K.: Label-free segmentation of COVID-19 lesions
in lung CT. IEEE Trans. Med. Imaging (2020)

42. Zheng, Z., Hong, P.: Robust detection of adversarial attacks by modeling the intrin-
sic properties of deep neural networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 7913–7922 (2018)

43. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits,
technology trends, case studies with progress highlights, and future promises. Proc.
IEEE 109(5), 820–838 (2021)

44. Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of Medical Image Computing
and Computer Assisted Intervention. Academic Press, Cambridge (2019)


