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ABSTRACT
Security-critical data can leak through very unexpected side chan-
nels, making side-channel attacks very dangerous threats to informa-
tion security. Of these, cache-based side-channel attacks are some
of the most problematic. This is because caches are essential for
the performance of modern computers, but an intrinsic property of
all caches – the different access times for cache hits and misses –
is the property exploited to leak information in time-based cache
side-channel attacks. Recently, different secure cache architectures
have been proposed to defend against these attacks. However, we do
not have a reliable method for evaluating a cache’s resilience against
different classes of cache side-channel attacks, which is the goal of
this paper.

We first propose a novel probabilistic information flow graph
(PIFG) to model the interaction between the victim program, the
attacker program and the cache architecture. From this model, we
derive a new metric, the Probability of Attack Success (PAS), which
gives a quantitative measure for evaluating a cache’s resilience
against a given class of cache side-channel attacks. We show the
generality of our model and metric by applying them to evaluate
nine different cache architectures against all four classes of cache
side-channel attacks. Our new methodology, model and metric can
help verify the security provided by different proposed secure cache
architectures, and compare them in terms of their resilience to cache
side-channel attacks, without the need for simulation or taping out a
chip.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures; • General and reference → Evaluation; • Computer
systems organization → Processors and memory architectures;
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1 INTRODUCTION
Confidentiality, integrity and availability are the key components of
information security. Among them, loss of confidentiality cannot
be reversed once the information has leaked. Encryption is very
frequently used to protect data confidentiality. Various encryption
algorithms have been proposed, as have attacks on these algorithms.
Some of these attacks focus on intrinsic algorithm vulnerabilities
and try to break the algorithms themselves. Other attacks target
implementations of the algorithms, even though the algorithms are
shown to be secure. Side channel attacks fall in the latter class, and
they target implementation characteristics, such as execution time
[8], power consumption [21], resource sharing [9], sounds [1] and
radiation [10] of real implementations of crypto algorithms.

Side channel attacks are serious threats to information security
for many reasons. First, side-channel attacks are hard to detect. Most
side-channel attacks do not require special privileges or equipment,
and their behavior may not be overtly harmful. For example, a
simple program running in user mode measuring execution time,
or a smartphone near a laptop with its microphone on, can both be
side-channel attacks. Second, side channels are not easy to eliminate
without affecting performance. Removing potential side channels
from physical or software implementations of crypto algorithms
often significantly degrades efficiency, e.g., disabling a cache or
disabling sharing of bus wires. Third, side-channel attacks can break
various systems. This is because side-channel attacks target the
physical features of implementations of algorithms, rather than a
specific algorithm. Therefore, different crypto algorithms can be the
targets of one type of side-channel attack, as long as they have some
similarity in their hardware or software implementations. Fourth,
side-channel attacks destroy the entire confidentiality of data or
programs, once they succeed, because they recover cryptographic
keys, instead of decrypting specific data. No matter what plaintext is
encrypted, as long as the secret keys are leaked, the encrypted data
can be easily recovered by attackers because encryption/decryption
algorithms are publicly known.

Cache based side-channel attacks exploit the difference in the
access times of cache hits and misses. This makes cache side-channel
attacks hard to eliminate, because this time difference is an inherent
feature of all caches. Also, disabling the cache is not a practical
solution to these attacks, because caches are the most important
performance component in modern computers, and disabling the
cache causes unacceptable performance degradation.

1.1 Past Work
These cache attacks are realizable in the real world, for example [3],
[8], [2], [25] successfully attack the L1 cache, and recovered the
secret keys of AES. [20] shows cache side-channel attacks are prac-
tical on the last level cache (LLC) as well. [33] shows that L2 cache
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side-channel attacks in virtualized environments are practical. [37]
successfully launched cache side-channel attacks in cloud settings.

Many approaches have been proposed to defeat these attacks, and
they can be categorized into two classes: software based approaches
[4], [11] and hardware based approaches. Software approaches of-
ten mitigate only specific applications. For example, [23] discusses
compact S-box tables and frequently randomized tables for AES
encryption. Special instructions are proposed for AES in [22] and
[28]. System level mitigation [12] may cause impact on performance.
Uncachable tables and inaccessible high-resolution timers are ap-
proaches to defend against side-channel attacks [29], [30]. However,
uncacheable tables increase the total execution time of encryption
and inaccessibility of timers cause other benign applications to not
work properly. [34] and [16] claim prefetching (and locking) can be
used as a mitigation technique, without significantly influencing per-
formance, however, only a specific type of attack can be prevented.
[16] proposes a defense of LLC (Last Level Cache) side-channel at-
tacks based on CAT (Cache Allocation Technology). This approach
not only prefetches secure critical data, but also pins them in the
LLC, thus all secure critical accesses are hits. However, pinning the
data in the cache causes cache fragmentation and needs support by
special hardware.

Hardware based approaches provide a different way of defending
against cache side-channel attacks. Many new cache architectures
have been proposed. In general, there are two categories of defenses:
partitioning based approaches and randomization based approaches.
The first category includes the Static Partitioned (SP) cache [24],
the Partition Locked (PL) cache [31] and the Non-monopolizable
(Nomo) cache [7]. Randomization based cache architectures include
Random Permutation (RP) [31] cache, Newcache [32], [19], Random
Fill (RF) [18] cache and Random Eviction (RE) cache [5]. We will
describe these secure cache proposals in greater detail in Section 2,
and will evaluate their resilience to cache side-channel attacks in
Section 4.

Some work has been proposed on evaluating cache security. [27],
[15], [14], [35] use mutual information to evaluate cache security. [5]
introduces the side-channel vulnerability factor (SVF) and pattern
correlation to evaluate caches. [36] suggests the Cache Side-channel
Vulnerability metric (CSV) as an improvement to SVF for the access-
based attacks considered in [5]. [27], [26] and [6] used success
probability to calculate an attacker’s chances of success.

However, very limited work has been proposed on systematically
modeling and comparing between different caches against different
kinds of attacks. In this paper, we will answer two questions: (1) How
can we systematically model and evaluate a cache’s resilience to
side-channel attacks? (2) Among all proposed secure cache designs,
which one is more resilient to a class (or classes) of cache side-
channel attacks?

Our contributions are:

• We propose the Probabilistic Information Flow Graph (PIFG),
a new model based on an information flow graph (IFG) and
conditional probabilities, and a new metric, Probability of
Attacker’s Success (PAS) to evaluate and quantify a cache
architecture’s resilience to cache side-channel attacks. We
show how PIFG models the relevant features of attackers,

victims and cache architectures. We also show the impact of
an attacker preparing for a cache attack (pre-PAS).

• We apply PIFG and PAS on nine cache designs and four
practical attacks, which cover all the known time-based cache
side-channel attacks and hardware secure cache defenses.

2 BACKGROUND
2.1 Cache Side Channel Attacks
Table 1 shows a classification of all cache side-channel attacks,
using timing differences (due to cache hits or misses) as the channel
medium to leak secret meta-data.

The intrinsic characteristic of most cache attacks is the timing
difference between cache hits and misses. An ideal attacker is able
to observe whether each of the victim’s memory accesses is a cache
hit or cache miss. He is also able to infer the memory address or
addresses used by the victim from his observations of the cache
shared with the victim. This memory address (or addresses) is the
metadata leaked to the attacker through such cache timing side
channel attacks, from which he can derive, for example, the secret
key of encryption algorithms.

However, in general, attackers do not have the ability to observe
each of the victim’s cache accesses. Therefore, indirect observations
are used. In some of these attacks, attackers measure the access
time of each of his own individual memory accesses (column 2 of
Table 1), after some interferences with the victim. In other attacks,
attackers observe the total execution time of the victim’s security-
critical operation (column 1 of Table 1), instead of the access time
of each memory access. In Table 1, we use the historical names,
"access-based" versus "timing-based" cache side-channel attacks
to distinguish these two types of attacks, although both are based
on measuring time differences, but at different scales of a single
memory access or the time for an entire security-critical operation
(e.g., encryption of a whole block of memory), respectively.

Cache side-channel attacks can also be classified into "miss
based" attacks versus "hit based" attacks. In the former, attackers are
interested in observing whether there is a longer average time (ac-
cess time or operation execution time, over many trials) due to cache
misses. The cache misses are due to either the victim (column 1) or
the attacker process (column 2).In the latter, denoted hit-based at-
tacks, attackers are interested in observing whether there is a shorter
average time due to cache hits.

Since hit/miss based attacks and timing/access based attacks are
orthogonal, we have four categories of cache side-channel attacks,
which cover the space of all known cache side-channel attacks. Our
proposed model covers all these 4 categories, and thus all cache
side-channel attacks based on the timing channel. We give a repre-
sentative example of each category in Table 1, and describe each of
these below. In the names of the representative attacks, the attacker
performs the 2 actions, e.g., "evict" and "time", with the "-and-"
indicating the attacker waits in-between these actions for the victim
to perform the security-critical operation (e.g., crypto) between these
two actions, except for the Collision attack, where the attacker does
not perform any cache actions.

Type 1, e.g., Evict-and-time Attack: The attacker wants to ob-
serve whether the victim has a longer average execution time due
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Table 1: Types of cache side-channel attacks. This table covers
all known cache side-channel attacks due to time differences.

Timing Based Attacks Access Based Attacks
Type 1: Type 2:

Miss Based
Attacks

Observe if victim uses
the attacker-evicted
cache line(s), caus-
ing victim’s longer
execution time for an
entire security-critical
operation.

Observe if victim evicts
the attacker’s cache
line(s), causing the
attacker to later miss
on these cache line(s)
resulting in longer
memory access time.

E.g., Evict-and-time at-

tack

E.g. Prime-and-probe

attack

Type 3: Type 4:
Hit Based
Attacks

Observe if victim reuses
memory lines fetched
by his previous mem-
ory accesses, causing
victim’s shorter execu-
tion time for an entire
security-critical opera-
tion.

Observe if attacker
uses the victim-fetched
cache line(s), which
causes the attacker’s
shorter memory access
time.

E.g. Cache Collision

attack

E.g. Flush-and-reload

attack

to the victim’s cache miss(es), over a large number of trials. In
this attack, the attacker first evicts one (or some) cache set (sets)
which contain the victim’s security-critical data. If the victim uses
the evicted data, a cache miss occurs. This cache miss increases the
victim’s execution time for the security-critical operation (e.g., a
block encryption in AES), which can be observed by the attacker.

Type 2, e.g., Prime-and-probe Attack: The attacker wants to ob-
serve whether he gets a longer access time due to a cache miss for his
own memory access. In this attack, the attacker first "primes" some
cache lines by loading his own memory lines into the cache. Then,
the victim executes the secure operation. If the victim’s security-
critical data maps to a primed cache line, the attacker’s cache line is
evicted. Then, when the attacker "probes" the same memory line(s)
by loading it (them) again, he can measure his own access time to
see whether he gets a cache miss or not. If the victim did not fetch
his own data line into a primed cache slot, the attacker should get a
cache hit.

Type 3, e.g., Cache Collision Attack: The attacker wants to ob-
serve whether the victim has a shorter execution time due to cache
hits of the victim’s own memory accesses. This attack is very spe-
cial because the attacker does not need to interfere with the victim.
When the victim accesses the same memory line M again, the second
memory access is a hit because the first memory access has fetched
M into the cache. This hit causes the victim’s execution time to be
shorter. The hits because of previous memory accesses are called
"cache collisions".

Type 4, e.g., Flush-and-reload Attack: The attacker wants to
observe if he gets a cache hit for his own memory access. In this
attack, the attacker shares a library or data with the victim. The
attacker first flushes the shared memory line(s) out of the cache,
then waits for the victim to execute. If the victim uses the shared
library or data, these shared memory lines will be fetched into the
cache. After the victim finishes his security-critical operations, the
attacker reloads the shared memory lines. A hit in the attacker’s
reloads indicates that the corresponding memory line has been used
by the victim.

2.2 Secure Cache Architectures
Secure cache architectures have been proposed to defend against
cache side-channel attacks. In general, they can be classified into
two categories: partitioning based architectures and randomization
based architectures. We briefly introduce these secure cache designs
below.

2.2.1 Partitioning based architectures. Intuitively, partitioning
based secure cache architectures separate the victim’s cache partition
and the attacker’s cache partition. These architectures significantly
reduce interference between the attacker’s and the victim’s memory
accesses, however, they often degrade the cache’s performance.

Static Partitioning (SP) Cache: This is the basic design of parti-
tioning based caches. A static partitioning cache statically separates
the cache for the victim and the attacker. No sharing of the cache
is allowed in this architecture. This cache architecture prevents all
interferences of victim’s and attacker’s memory accesses. However,
the security protection is at the cost of degrading cache performance.
It is only deployed in extremely security-sensitive applications.

Partition Locked (PL) Cache: Partition locked cache [31] lever-
ages cache line based partitioning, which is much finer in granularity
(better) than SP cache. Every cache line in the PL cache can have
its Protection bit set or cleared. A protected cache line cannot be
replaced by non-protected lines, e.g. by the attacker’s data. On an
attacker’s cache miss to evict a protected cache line, the attacker’s
data is directly transferred from memory to the processor, without
being brought into the cache. The line based granularity makes cache
sharing still possible. The correct way to use PL cache is prefetching
(and lock) all security-critical data into the cache before starting
security-critical operations.

Non-monopolizable (Nomo) Cache: Non-monopolizable (Nomo)
Cache [7] uses way-based partitioning, rather than set-based (for SP)
or line-based (for PL) partitioning. Each security-sensitive process
is assigned some reserved ways in each cache set. All the remain-
ing cache ways can be shared by all processes. This modification
prohibits the attacker occupying a whole cache set. However, if the
victim’s data exceed the reserved ways, the victim has to interfere
with the attacker. In this situation, it is possible that the victim still
leaks some information through cache sharing.

2.2.2 Randomization based architectures. Randomization based
cache architectures mess up the information obtained by the attacker.
We briefly discuss some randomization based cache architectures
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below. In general, randomization based architectures are more effi-
cient, performance wise, than partitioning based approaches.

Conventional Fully Associative (FA) Cache with Random re-
placement policy: A fully associative cache with a random replace-
ment policy is the most basic version of a randomization based cache.
Any memory line can be mapped to any cache line, and a random
cache line is evicted on a cache miss. However, FA caches are slow
and power-hungry.

Random Permutation (RP) Cache: A Random permutation
cache [31] uses dynamic permutation tables to map memory ad-
dresses to cache sets. In a conventional set-associative cache, the
index bits in the memory addresses determine the cache set index
number. In RP cache, each (secure) process has a distinct permuta-
tion table. Index bits are first translated to the real cache set index
number using the table. If the victim’s memory access M is mapped
to a cache set S that belongs to another process (possibly the attacker),
a random cache set S0 will be evicted and the index mappings of S
and S0 are swapped.

Newcache: Newcache [32] [19] randomizes memory-to-cache
mappings. This randomization is achieved by using an ephemeral
logical cache between memory addresses and real physical cache
lines. The mapping between memory addresses and the logical cache
is like a direct mapped cache. The mapping between the logical
cache and the physical cache is fully associative. Newcache is a
power-efficient version of a fully-associative cache with random re-
placement because fewer tag bits need to be compared associatively.
This reduces the width of the CAM (Content Addressable Memory)
used to inversely map each physical cache line to a memory line [19].

Random Fill (RF) Cache: Random fill cache [18] modifies the
fetch policy on a cache miss. On a cache miss, instead of bringing
the accessed memory line M into the cache, RF cache randomly
selects a memory line M0 within a neighborhood window of M (from
memory line M�Wa to memory line M+Wb) with equal probability.
Because this cache design only modifies the fetch policy, it can be
combined with most of the other secure cache architectures.

Random Eviction (RE) Cache: Rather than randomizing the
fetch policy or the memory-to-cache mapping, the Random Eviction
(RE) cache randomly evicts cache lines out of the cache. A ran-
dom cache line is evicted after a predetermined number of memory
accesses. For example, 20% random eviction RE cache means the
cache randomly evicts a cache line every 5 memory accesses.

3 PROBABILISTIC INFORMATION FLOW
GRAPH

In this section, we define our proposed probabilistic information
flow graph (PIFG) to model the cache architectures and cache side-
channel attacks. However, since a PIFG can model more attacks
than just cache side-channel attacks, we define PIFG more generally
in this section. A probabilistic information flow graph is a directed
acyclic graph (DAG) with edge flow probabilities on its edges. The

Figure 1: Insight 1: The cache translates the interference to the
attacker’s observation.

information flow graph is used to model the attack and any interfer-
ence with the victim, i.e. each type of the attack can have a unique
information flow graph. The edge flow probabilities are used to
model the different cache architectures. We define the terminology
used in the probabilistic information flow graph below.

3.1 Key Insights
Before formally giving our proposed model, we first introduce two
key insights of cache side-channel attacks which inspire this model.

Insight 1: The root cause of all cache side-channel attacks is the
existence of a path that links security-critical operations and the
attacker’s observations through the cache. The attacker’s operation
and the victim’s operation interfere in the cache. The cache translates
this interference to the attacker’s observations. Figure 1 shows this
interference.

Insight 2: Most of the cache operations have the Local Markov
Property. We consider the cache elements, i.e. memory address,
cache index and cache lines, as random variables. Local Markov
Property means the probability distribution of random variables only
depends on their immediate parent node/s. For example, probability
of a cache line selected for eviction on a cache miss is only de-
pendent on the cache set index, and not dependent on the memory
address that mapped into this cache set, when the cache set index is
given (explained further with Figure 3).

3.2 Probabilistic Information Flow Graph (PIFG)
and Conditional Independence.

Information Flow Graph (IFG): This is a directed acyclic graph
defined by a vertex (node) set V and an edge set E. V contains all
vertices in the graph, each vertex can be interpreted as a random
variable. For example, in the case of cache side-channel attacks, a
vertex can represent cache index, cache line or memory address. E
contains directed edges that connect two or more vertices.

Parent and child nodes: v1 is a parent node of v2 (thus v2 is a
child node of v1) iff there exists a directed edge from v1 to v2. Note
that one edge can have multiple parents but only one child.

Edge Flow Probability (EFP): is defined as the conditional prob-
ability of a child node given its parents.
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Probabilistic Information Flow Graph (PIFG): This is an IFG
where every edge is assigned an edge flow probability.

Edges and conditional independence: Nodes that are not con-
nected represent information that is conditionally independent given
their parent nodes.

3.3 Paths and Security-Critical Paths in PIFG
Cache side-channel attacks try to measure the time differences
caused by specific memory accesses. Therefore, there are three
kinds of nodes which are very special in a PIFG, viz., the victim’s
security-origin nodes, the attacker’s security-origin nodes and
the attacker’s observation nodes. From our key insight 1, there
must be a path that links the security-origin nodes and the attacker’s
observation nodes.

Victim’s security-origin nodes represent the secure information
which the attacker tries to obtain in an attack. For example, in most
of the cache side-channel attacks, the victim’s security-origin node
is the victim’s security-critical memory addresses, i.e., memory
addresses that can leak security-critical information (e.g., key bits).

Attacker’s security-origin nodes represent the attacker’s opera-
tions (if any) required to interfere with the victim (if any). Sometimes
there are no attacker’s security-origin nodes in a PIFG (e.g. in cache
collision attacks). An example of an attacker’s security-origin node
is the specific memory addresses accessed by the attacker in order to
evict the victim’s memory lines in the cache. It can be interpreted as
the attacker’s preparation for the attack.

Attacker’s Observation nodes represent what can be observed
by the attacker. For example, it can be the block encryption time (in
an evict-and-time attack) or the memory access time (in a prime-and-
probe attack) in cache side-channel attacks. Note that the attacker’s
observation is not limited to time (power, electromagnetic emana-
tions, etc.), however, in this paper, we mainly discuss time-based
cache side-channel attacks.

Path is a sequence of edges which connects vertices. Because
PIFG is an acyclic graph, the nodes in a path are all distinct from
one another.

Security-critical Path connects security-origin nodes and ob-
servation nodes. It is the path that leaks information. We define
the path that connects the victim’s security-origin node and the at-
tacker’s observation nodes as the victim’s security-critical path, and
the path that connects the attacker’s security-origin node and the
attacker’s observation nodes as the attacker’s security-critical path.
If there is no attacker’s security-origin node in a PIFG, there is also
no attacker’s security-critical path. However, in an attack, a vic-
tim’s security-critical path always exists. The security-critical path
is the union of the victim’s security-critical path and the attacker’s
security-critical path.

Security-critical Nodes are the nodes on the security-critical
path. We also denote with an asterisk * the nodes where secret
information from a victim’s security-origin node can propagate to.

3.4 A General Example of a PIFG
Figure 2 is a PIFG with:
Vertex set V = {A,B,C,D,E,F,G,H, I,J,K,L,M}
Edge set E = {e1,e2...e11}
Every edge in the IFG is assigned with an edge flow probability, i.e.

Figure 2: A general example of probabilistic information flow
graph.

p1, p2 ... p11. p1 = P(B|A), p2 = P(C|B) and so on.
The victim’s security-origin node is I, the attacker’s security-origin
node is A. The attacker’s observation node is K.
The victim’s security-critical path is SPV = {e5,e6,e7,e9}. The at-
tacker’s security-critical path is SPA = {e1,e4,e6,e7,e9}. The vic-
tim’s security-critical path and the attacker’s security-critical path
intersect at e6.
The security-critical nodes are SV = {A,B,E, I,J,F,G,K}.

3.5 Use PIFG to Model Evict-and-time Attack
We now show how to model the evict-and-time attack using PIFG.
Algorithm 1 shows the pseudo-code for a first-round AES evict-and-
time attack. We generalize it to reveal the root causes of evict-and-
time attacks, and model this class of Type 1 attacks (see Table 1)
with PIFG in Figure 3.

In lines 5 through 8, we initialize the time accumulation bins and
counters for each bin. There are 16 key bytes in a 128-bit AES key,
and also 16 bytes in a block of plaintext to be encrypted. Each byte
has 256 possible values. The attacker finds the average execution
time for each of the 256 byte values, for each key byte.

In line 9, the attack performs N trials, where each trial is a block
encryption of a plaintext block p (16 bytes array, shown in lines
10 through 18). p[i] is the i-th byte value of plaintext p. Rdtsc is a
read-timer instruction in Intel x86 processors.

In lines 20-22, the attack accumulates the time of this block
encryption in the appropriate time accumulator bin and adds one to
the counter for this bin.

The 16 key-dependent AES table entries read in line 14 are
AEStable[p[i]� k[i]]. If the victim uses evicted (line 1) table en-
tries in line 14, the encryption time T [i][p[i]] will be statistically
higher than if the evicted entries are never used in the victim’s
block encryption operation. Therefore, the attacker’s observation
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Algorithm 1 An example of evict-and-time attack on AES
1: The attacker evicts a set S of cache lines, which contains AES

encryption table entries
2: // Initialize time accumulation bins, T[16][256]
3: // Initialize counters, Count[16][256]
4: // Number of bytes in a block is 16
5: for i = 0 to 15 do
6: for j = 0 to 255 do
7: T[i][j] = 0
8: Count[i][j] = 0
9: for n=1,2,...,N do

10: rdtsc t1
11: // Victim encrypts plaintext block p in 10 rounds
12: for Round r=1,2,...,10 do
13: if r==1 then
14: Read 16 key�dependent AES table entries
15: if r , 1 then
16: Randomly read 16 AES table entries
17: XOR read values with round keys
18: rdtsc t2
19: // Attacker observes time for 1 entire block encryption, t2�t1
20: // Define p[i] as the i-th byte of plaintext p
21: for i = 0 to 15 do
22: T[i][p[i]] += t2 � t1
23: Count[i][p[i]] ++
24: The attacker takes average, i.e. A[i][ j] = T [i][ j]

count[i][ j] , and looks for
a longer average in each row A[i][:].

is whether the block encryption time is longer than average, over a
large number of trials (count[i][j]).

We generalize the root causes of evict-and-time attacks: the at-
tacker evicts some cache lines and the victim uses one of these
evicted lines, which causes the victim’s longer execution time.
Therefore, there are two "security-origin events" in this attack: one is
the evicted set of cache lines S (line 1 in the example), and the other
is the victim’s accessed memory lines (in line 14). The attacker ob-
serves the victim’s execution time (line 21). Our PIFG tries to model
how these two security-origin events (in PIFG nodes) interfere in
the cache and result in the attacker’s observation.

In Figure 3, the security-critical edges are {e1,e2,e3,e4,e5}. The
first step in an evict-and-time attack is the attacker accessing a
memory line. e1 models the mapping between the accessed memory
address and cache set index number. If the cache set index number is
determined, e2 models which cache line (in the cache set) is selected
to be evicted. e3 models the mapping between the selected cache
line and the evicted memory line. Together, e1, e2 and e3 model the
probability that the attacker succeeds in evicting a victim’s memory
line out of the cache.

e4 models whether the memory line ME evicted by the attacker
and a later memory access MV by the victim results in a cache miss
or hit. e5 models the noise introduced in the observation. We assume
the noise is Gaussian additive noise.

Based on the PIFG model for the evict-and-time attack, we assign
conditional probabilities p1, p2...p5 to the corresponding edges. For

example, p1 refers to the probability distribution of the cache set
index number given the accessed memory address. We will show
how to calculate p1, p2...p5 for all secure cache architectures in
Section 3.7.

Figure 3: PIFG For Evict-and-time Attack

Table 2: Conditional probabilities model the cache architecture
in PIFG.

pn Mappings Cache Feature Modelled

p1
Map from memory address
to cache set

Memory to set index mapping,
Cache size, associativity

p2
Map from cache set to cache
line

Replacement policy within a
cache set

p3

Map from cache line to the
memory line evicted out of
the cache

Line locking policy, if any

p4

Map from evicted memory
line and accessed memory
line to whether the access is
a hit or miss

Hit or miss policy

p5
Map from hit/miss to access
time Noise in timing, fuzzy timer

3.6 Quantification of Attacker’s Success
We have defined the PIFG model in the previous sections, now we
discuss how to quantify the resistance of a secure cache architecture.
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In order to quantify the attacker’s success, we propose a metric,
probability of attacker’s success (PAS).

Probability of Attacker’s Success, PAS: PAS is defined as the
conditional probability of security-critical nodes (not including
security-origin nodes) on the security-critical path, given the security-
origin nodes. It can be interpreted as the probability that the whole
attack works as the attacker desires. For example, in Figure 2, PAS
is defined as:

PAS = P(B,E,J,F,G,K | A, I)

Lemma 1 The joint distribution of nodes equals the multiplication
of the conditional probability of nodes given their parents.
Proof: Because PIFG is a directed acyclic graph, we can sort the
nodes based on their topological order, i.e. vi is sorted to a later
position of v j if vi is a child node of v j. Without loss of generality,
we assume the sorted nodes are v1,v2...vn. Because of the Local
Markov Property introduced in 3.1, we have:

P(v1,v2...vn) = P(v1)P(v2|v1)P(v3|v1,v2)...P(vn|vn�1, ...v1) (1)
= P(v1|v1’s parents)...P(vn|vn’s parents) (2)

=
n

’
i=1

P(vi|vi’s parents) (3)

Note that P(vi|v0isparents) = P(vi), if vi is a security-origin node.
Theorem 1 PAS equals the multiplication of all edge flow proba-

bilities on the security-critical paths.
Proof: By definition, security-origin nodes have no parent nodes,

therefore they are independent of each other. Let o1,o2...on be the
security-origin nodes. Let v1,v2...vm be the security-critical nodes
which are not the security-origin nodes. By Lemma 1 we have:

P(o1, ...on,v1...vm) =
n

’
i=1

P(oi|oi’s parents)
m

’
j=1

P(v j|v j’s parents)

(4)

=
n

’
i=1

P(oi)
m

’
j=1

P(v j|v j’s parents) (5)

Therefore, we have:

P(v1, ...vm|o1, ...on) =
P(o1,o2...on,v1,v2...vm)

P(o1,o2...on)
(6)

=
’n

i=1 P(oi)’m
j=1 P(v j|v j’s parents)

’n
i=1 P(oi)

(7)

=
m

’
j=1

P(v j|v j’s parents) (8)

= ’
ei2security�critical path

pi (9)

where pi is the assigned edge flow probability on edge ei.

A concrete example is shown in Figure 2, where we have

PAS = P(B,E,J,F,G,K|A, I)
= P(B|A)P(E|B)P(J|I)P(F |E,J)P(G|F )P(K|G)

= p1 ⇤ p4 ⇤ p5 ⇤ p6 ⇤ p7 ⇤ p9

Table 3: Conditional probability of evict-and-time attack

p1 p2 p3 p4 p5 PAS
SA Cache 1.0 0.125 1.0 1.0 1.0 0.125
SP Cache 0 0.125 1.0 1.0 1.0 0
PL Cache 1.0 0.125 0 1.0 1.0 0

Nomo Cache 1.0 0.167 1.0 1.0 1.0 0.167
Newcache 1.0 1.95⇤10�3 1.0 1.0 1.0 1.95⇤10�3

RP Cache 1.56⇤10�2 0.125 1.0 1.0 1.0 1.95⇤10�3

RF Cache 1.0 0.125 1.0 1.0 1.0 0.125
RE Cache 1.0 1.0 1.0 1.0 1.0 1.0

Noisy Cache 1.0 0.125 1.0 1.0 0.691 0.086

3.7 Calculate Edge Probabilities in PIFG for
Evict-and-time Attack.

We use the evict-and-time attack as an example to show the calcu-
lation of conditional probabilities on each edge. We list the cache
configurations we assume in our calculations in Table 4. All caches
are 32 Kbytes with 64 byte lines, giving 512 cache lines. The baseline
conventional cache is 8-way set-associative (64 sets) with random
replacement rather than the more conventional LRU replacement.
Some secure caches are also set-associative caches and all are mod-
eled as 8-way SA with the benefit of random replacement. As dis-
cussed in Section 3.5, there are five edges on the security-critical
path of an evict-and-time attack. We list the five conditional proba-
bilities and their corresponding mappings in Table 2. We show the
values of these edge probabilities in Table 3, for each cache archi-
tecture, for evict-and-time attacks, and discuss their computation
below.

Table 4: Cache configurations for evaluation.

Set Associative(SA) Cache 8-way set-associative

Statically Partitioned(SP) Cache 8-way set-associative, 2 static
partitions

Partition Locked(PL) Cache 8-way set-associative
Nomo Cache 1

4 ways reserved for trusted app
Newcache 512 cache lines, 1 set

Random Permutation Cache 8-way set-associative
Random Fill Cache Window size Wa =Wb = 64 lines

Random Eviction Cache Direct map, 10% random evic-
tion

Noisy Cache 8-way set-associative, noise std
s = 1

All cache architectures except SP and RP cache have p1 = 1.0.
This is because they follow conventional cache mapping, with de-
terministic memory address to cache index mapping, so a memory
address is mapped to the corresponding cache set with probability 1.
However, in the case of SP cache, a memory line in the attacker’s
memory space cannot be mapped to a victim’s cache set. That is
why p1 = 0 for SP cache. In RP cache, the memory address can
be mapped to any cache set. Therefore, p1 =

1
S where S = 64 is the

number of sets.
p2 is the conditional probability of a cache line selected for evic-

tion (replacement) given the cache index number. Although most
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conventional SA caches use LRU replacement, we use random re-
placement for all SA caches since this gives better resilience against
cache attackers. Therefore for conventional caches with random re-
placement policy, p2 =

1
W where W is the number of lines in a set.

Since SA, SP, PL, RP, RF and Noisy are all 8-way set-associative,
p2 = 0.125. For Newcache, this value is p2 =

1
N where N = 512

is the total number of cache lines in the cache. Newcache can be
considered as a cache with only one set. For Nomo cache, we are con-
sidering the attacker evicts an unreserved cache line, thus p2 =

1
W 0

where W 0 is the number of unreserved cache lines in a cache set.
This is 8⇤ 3

4 = 6 ways. RE is a Direct-mapped cache, so W = 1, and
p2 = 1

W = 1.
p3 models the probability distribution of the memory line being

evicted given a selected cache line. This conditional probability is 1.0
for all cache architectures except PL cache. In all cache architectures
except PL cache, the memory line in the selected cache line must be
evicted out with probability 1. However, in PL cache, if the cache
line which contains the security-critical data is correctly locked, the
memory line will not be evicted out.

p4 models whether the victim’s access is a hit or miss, given
the memory line evicted out in the previous step and the victim’s
accessed memory address. Unfortunately, no secure cache architec-
tures play any tricks in this step. The victim’s access must be a miss
if the memory line is evicted out in the previous step and accessed
again by the victim. Our model suggests that there may be a new
opportunity for a new secure cache design.

We assume Gaussian noise in the attacker’s observation on edge
e5, i.e the time distribution for a hit is a Gaussian distribution located
at 0, and the time distribution for a miss is also a Gaussian distribu-
tion but located at 1. The Gaussian assumption follows the Central
Limit Theorem, and we have done experiments on measuring real
cache hit/miss time to verify it. We use two types of errors, False
Positives (FP) and False Negatives (FN) as metrics. The illustration
of FP and FN are also shown in the Figure 4. Let s be the normalized
standard deviation, we have:

P(Attacker errors) = 1� 1p
p

Z •

1
2
p

2s

e�t2
dt = 1� 1

2
er f c(

1
2
p

2s
)

Figure 4: p5 values of evict-and-time attack

The multiplication of all these probabilities for a given cache
architecture gives the Probability of Attack Success (PAS) in the
last column of Table 3. PAS of 1, or close to 1, means the cache (in
this row) is not resilient to this class of attacks. PAS of 0, or close

to 0, indicates the cache is resilient to this class of attacks. SP and
PL caches are definitely resilient. RP and Newcache also have small
PAS values, and Newcache actually has higher resilience than RP
cache, if we also consider the "pre-PAS" initialization probabilities
in section 5.

4 MODEL OTHER ATTACKS WITH PIFG
In Section 3, we introduced our general probabilistic information
flow graph model and used it for quantifying evict-and-time attacks.
In this section, we first show that our proposed PIFG model is very
extensible to model new attacks and new architectures by using the
cache collision attack (Type 3) as an example. We also show the
models for Types 2 and 4 cache side-channel attacks.

4.1 Cache Collision Attack
The cache collision attack is special because the attacker does not
need to interfere with the victim. We build our initial PIFG model for
collision attack in Figure 5 (a). There are only two edges, p4 and p5,
on the security-critical path, and before RF cache was introduced,
no secure caches do good defenses in these two steps. p4 is the
probability of a hit on a second memory access to the same cache
line as the first memory access. This is 1.0 for conventional cache
architectures because if the first memory access fetches a memory
line into the cache, the second access of that memory line must be a
hit. This is, in fact, the main purpose of a cache. (We assume there
is no self-eviction in the victim’s security-critical accesses.)

In RE cache, p4 = 1� 1
NT , where N is the number of cache lines

in the cache and T is the interval between two random evictions.
Intuitively, it means the probability that "the later memory access
is a hit" equals the probability that "the previously fetched memory
line is not evicted because of the random evictions in RE cache". In
our cache configuration, N = 512 cache lines and T = 10 memory
accesses. Similar to the discussion in evict-and-time attack, p5 is 1.0
for all but the noisy cache (0.691).

It seems that these secure cache architectures cannot defend
against cache collision attacks, because getting a cache hit from
a previous memory access is the basis of the demand fetch policy
used in all caches (except RF cache). Random Fill (RF) cache is
specially designed to defend against cache collision attacks. We will
show how to include RF cache into our model. RF cache randomly
selects a memory in a nearby window of the accessed memory line,
and fetches that selected memory line into the cache. In order to
model this feature, we need to add one more node, i.e. selected
memory line, in the graph (Figure 5 (b) dotted node).

p0 models the conditional probability of the selected memory
line brought into the cache given the accessed memory line. p0 =
1.0 for conventional cache architectures and all the other cache
architectures considered so far (except for RF cache), because the
selected memory line is the accessed memory line in all these caches
due to the demand fetch policy. p0 =

1
Wa+Wb+1 for RF cache, where

Wa and Wb are backward and forward window sizes respectively,
i.e. the fetched memory line is randomly selected in the window
[MV 1 �Wa,MV 1 +Wb]. In our cache configuration, we choose Wa =

Wb = 64, which covers the entire AES encryption tables.
From the PAS results for cache collision attacks in Table 5, we

see that RF cache is the only cache that can defeat collision attacks.

348



How secure is your cache against side-channel a�acks? MICRO-50, October 14–18, 2017, Cambridge, MA, USA

(a) Old model for collision attack (b) New model for collision attack

Figure 5: Add a node in PIFG model to model new cache architecture, RF, for cache collision attacks.

Although the absolute value of PAS for RF cache does not look
very small (7.75⇤10�3), it is not higher than the probability that the
attacker just makes a random guess, where each cache line containing
AES table entries is equally likely to be brought in. Hence, our model
classifies RF cache as resilient against cache collision attacks.

Table 5: PAS of cache collision attacks.

p0 p4 p5 PAS
SA Cache 1.0 1.0 1.0 1.0
SP Cache 1.0 1.0 1.0 1.0
PL Cache 1.0 1.0 1.0 1.0

Nomo Cache 1.0 1.0 1.0 1.0
Newcache 1.0 1.0 1.0 1.0
RP Cache 1.0 1.0 1.0 1.0
RF Cache 7.75⇤10�3 1.0 1.0 7.75⇤10�3

RE Cache 1.0 0.9998 1.0 0.9998
Noisy Cache 1.0 1.0 0.691 0.691

4.2 Prime-and-probe Attack
We show the prime-and-probe attack model in Figure 6. In general,
the prime-and-probe attack consists of three memory-access phases:
(A) The attacker primes (evicts) victim cache lines, (B) The victim
misses on his accessed memory line, and evicts the attacker’s mem-
ory line in (A), and (C) The attacker accesses the same memory
line in (A) and misses on that. p11, p21, p31 model the first memory
access phase. This phase is the same as for the evict-and-time attack,

because the only goal of this phase is evicting the victim’s data out of
the cache. This shows how the similarity in the evict-and-time attack
and prime-and-probe attack are reflected in our model. p12, p22, p32
model the second memory access phase. p42 models the third mem-
ory access phase. Different from phases (A) and (B) which require
either a specific memory line to be fetched into the cache (A), and a
specific memory line to be evicted out (B), the attacker wins in this
phase as long as the attacker misses on his memory access. There-
fore, no cache architectures do any trick in p42. p5 is the same as p5
in the evict-and-time attack, modeling the noise introduced. Only
the noisy cache tries to mess the attacker’s observation in p5.

The PAS values for these Type 2 (prime-and-probe) attacks are
smaller than for the Type 1 attacks for the same cache. That is
because both attacks require the attacker evicting (priming) the
cache. However, in the victim’s memory access phase, the Type 1
attack only requires a cache miss, but a Type 2 attack also requires
the victim to evict a specific (attacker’s) memory line. Moreover, the
Type 2 attack requires one more cache miss in phase (C).

4.3 Flush-and-reload Attack
We show the flush-and-reload attack model in Figure 7. In general,
flush-and-reload attacks are very similar to cache collision attacks ex-
cept the collision is the attacker’s memory access MA (in the Reload
step) with the victim’s memory access Msv to a shared memory line.

Here, p0 models the probability of the selected memory line in
an RF cache window, given the accessed memory line. It is the same
as in the cache collision attack.

p4 models the probability of an attacker’s memory access causing
a cache hit given the line has been fetched by the victim, and models
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Figure 6: Information Flow of Prime-and-probe Attack.

the difference between cache-collision attacks and flush-and-reload
attacks. Different from cache collision attacks, the probability p4 = 0
for Newcache and RP cache because their PID (process identifier)
feature ensures that the shared data of different processes with differ-
ent PIDs will result in different cache line tags, so the data fetched
by the victim will not cause a hit for the attacker’s memory access.

p5 is the same as previous cache side-channel attacks that model
the noise introduced in the attacker’s observation.

Finally, we list PAS for all nine cache architectures against four
types of attacks in Table 6. The cache is more resilient if the number
is smaller. Note that when considering multiple line evictions, the
randomization based secure caches can have even lower PAS.

Table 6: PAS of four types of attacks for 9 cache architectures

Type 1 Type 2 Type 3 Type 4
SA Cache 0.125 1.56⇤10�2 1.0 1.0
SP Cache 0 0 1.0 1.0
PL Cache 0 0 1.0 1.0

Nomo Cache 0.167 0 1.0 1.0
Newcache 1.95⇤10�3 3.80⇤10�6 1.0 0
RP Cache 1.95⇤10�3 3.80⇤10�6 1.0 0
RF Cache 0.125 1.27⇤10�4 7.75⇤10�3 7.75⇤10�3

RE Cache 1.0 1.0 0.9998 0.9998
Noisy Cache 0.086 0.012 0.691 0.691

5 PREREQUISITE OF ATTACKS
In the collision attack and flush-and-reload attack in Section 4, we
assume a clean cache before the attack is launched. However, there
is still a missing puzzle: how can the attacker clean the cache in

advance if the security-critical data has been prefetched. In prac-
tice, the attacker has two options: a) use special instructions in

Figure 7: Information Flow of Flush-and-reload Attack.

specific architectures, e.g. clflush in x86, or b) access the memory
many times to evict out the security-critical data. The first option is
architecture-specific and sometimes requires special privilege, there-
fore in the following discussion, we only analyze the probability of
an attacker successfully cleaning the cache with large numbers of
memory accesses. This cleaning step is the prerequisite of collision
and flush-and-reload attacks. We discuss two replacement policies
for each cache architecture: Least Recently Used (LRU) and random.

For fairness in the comparison, we define that an attacker is
successful in cleaning the cache if he is able to remove all data in
a cache set and fill it with his own data. We analyze the probability
of an attacker’s preparation success (pre-PAS) under different cache
architectures below.

A: Set-associative (SA) Cache
In a conventional SA cache with LRU replacement, an attacker is
guaranteed to occupy the whole cache set after the number of trials
(memory accesses) reaches the set-associativity. For example, in an
8-way set-associative LRU cache, an attacker can fill up a whole
cache set with 8 or more memory accesses. Hence, in a w way
set-associative cache:

pre-PASSA_LRU =

(
0 k < w
1 k � w

(10)

We model the random replacement based cache as a ball-picking
game. Assume the cache’s associativity is w and the attacker can
access at most k memory lines. In the ball-picking game, there are
w balls (cache lines) in a box (cache set). The attacker tries k times,
and in each trial (memory access) he randomly chooses a ball from
the box and then puts it back. The attacker succeeds if he picks all
balls (accesses all lines in a set) at least once, and fails if there exists
a ball that he never picks (a memory line he never accesses) in k
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trials. The pre-PAS of w way set-associative cache with k trials is:

pre-PASSA_rand =

(
0 k < w
Âw

i=1 (�1)i+wCi
w (1� i

w )k k � w
(11)

B: Newcache
We define that an attacker succeeds if he can evict a target physical

cache line in Newcache. The probability of cleaning a specific cache
line in Newcache is:

pre-PASNewcache = 1� (1� 1
2n )

k

C: Static Partitioning (SP) Cache and Partition Locked (PL)
Cache
SP cache and PL cache are both partitioning based secure caches.
In SP cache, ideally the attacker and the victim do not share parti-
tions. In this case, it is impossible for the attacker to evict a whole
target cache set, i.e. pre-PASSP = 0. However, PL cache requires
secure critical data to be stored in advance before encryption or
other secure tasks, i.e. it requires prefetching. If secure data are not
prefetched into the cache, PL cache performs just like a conventional
set-associative cache [13].

D: Random Permutation Cache (RP) Cache
Random Permutation (RP) cache assigns each secure domain a
different permutation table. However, nothing prevents the attacker
from disabling this permutation feature of his own process. In this
situation, an RP cache is the same as an SA cache to the attacker.

E: Random Fill (RF) Cache
Now we consider a Random Fill (RF) cache based on an SA cache.
Random fill cache cannot prevent an attacker from evicting a de-
terministic set, because the attacker can set his window size equal
to 0. In this situation, RF cache degrades to an SA cache. This is
very similar to RP cache, where an attacker is also able to avoid the
security mechanisms and launch attacks.

F: Random Eviction (RE) Cache
The random eviction operation in Random Eviction cache [5] is
designed to randomly and periodically evict a cache line. We find
that, in the cleaning phase, the random eviction mechanism actually
helps the attacker. The random evictions induced by RE cache can
be considered as "free lunches" from the attacker’s point of view.

Assume the interval between two random evictions is N, i.e. a
random eviction happens every N memory accesses. Therefore, the
attacker can get b k

N c "free lunches" after k memory accesses. This
is equivalent to k+ b k

N c evictions. Pre-PAS of RE cache is shown
below:

pre-PASRE_LRU =

(
0 k+ b k

N c< w
1 k+ b k

N c � w

pre-PASRE_rand =

(
0 k+ b k

N c< w

Âw
i=1 (�1)i+wCi

w (1� i
w )k+b

k
N c k+ b k

N c � w
G: Nomo Cache

Nomo Cache reserves a portion a of lines in each cache set for the
security-critical process. If the reserved cache lines are sufficient
for the secure process, i.e. the secure process uses no more than
aw lines in any cache set, Nomo cache thoroughly separates the
attacker’s cache space and the victim’s cache space.

If the reserved cache lines are not enough for the victim’s secure
process, the attacker can interfere with the victim by first filling up

Figure 8: Pre-PAS of different cache architectures with random
replacement policy.

shared lines with his own data. We define the attacker succeeds if he
can evict all shared lines. Formally, assume the maximum number
of lines used by the victim’s process in a set is M, we have:

If M  aw:

pre-PASNomo = 0

If M � aw:

pre-PASNomo_LRU =

(
0 k < (1�a )w
1 k � (1�a )w

pre-PASNomo_rand =

8
><

>:

0 k < (1�a )w
Â(1�a )w

i=1 (�1)i+(1�a )wCi
(1�a )w (1�

i
(1�a )w )k

k � (1�a )w
As expected, when a = 0, Nomo cache degrades to a conventional
set-associative cache.

We show results of pre-PAS for different cache architectures with
random replacement policy in Figure 8. A cache architecture with
pre-PAS=L is more resilient to attacks which require cleaning the
cache. Hence, for cache architectures with pre-PAS=L, extra security
can be provided for Type 3 and 4 attacks.

In Figure 8, we label the caches as having High (H), Medium
(M) or Low (L) pre-PAS values. 8-way SA, RP, RF and Nomo
caches have pre-PAS=H. RE and 32-way SA, RP and RF caches
have pre-PAS=M. Newcache, SP and PL caches have pre-PAS = L.

We make some interesting observations from this figure:
• Pre-PAS increases as the number of attacker’s trials increases.

Pre-PAS decreases as associativity increases.
• None of the curves reaches 1.0 even though some of them are

very close. This indicates that no matter how many accesses
have been done by the attacker, he cannot be 100% sure that
the cache is clean, with random replacement.

• Partitioning based caches have pre-PAS=0. Newcache per-
forms the best among all randomization based cache architec-
tures and has a very low pre-PAS.

We should not read too much into small differences in PAS values
between different caches. Rather, we recommend using the com-
bination of PAS and pre-PAS values to give broad categories of
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Table 7: Resilience of caches to cache side channel attacks.
0p0 = high resilience, 0X 0 = low resilience.

Type 1 Type 2 Type 3 Type 4
SA Cache X X X X
SP Cache

p p
X X

PL Cache
p p

X X
Nomo Cache X

p
X X

Newcache
p p

X
p

RP Cache
p p

X
p

RF Cache X
p p p

RE Cache X X X X
Noisy Cache X X X X

the relative security (i.e., resilience) of different cache architectures
against each type of cache attacks, as illustrated by Table 7. Here,
a "

p
" indicates high resilience to that class of cache attacks, cor-

responding to PAS and pre-PAS values of 0 or close to 0. An "X"
indicates low (or no) resilience, where the PAS value is close to (or
equal to) 1.

6 VALIDATION OF PIFG MODEL
Since there are no machines that have been built with any of the 8
secure architectures proposed, we cannot compare our results with
real hardware. In this section, we confirm that our results agree
with the simulation results available for each cache architecture. We
illustrate this below.

Case Study: Type 1 attacks (e.g., Evict-and-time)
Intuitively, partitioning-based secure caches make it impossible

for the attacker to succeed if his attack involves interfering with the
victim’s cache usage, because he cannot evict any cache lines in the
victim’s partition. This corresponds to ’

p
’ in Table 7 for SP and PL

caches for Type 1 and Type 2 attacks. The results for randomization
based caches are less obvious. Fortunately, Liu [17] showed the
comparison of Newcache and conventional SA cache, replicated
in Figure 9. The conventional SA cache on the left has significant
high points (longer execution time) near x=0; however, Newcache
(right) does not. This shows that Newcache is more resilient than
conventional SA cache in defending against Type 1 attacks, which is
consistent with our PIFG results.

Figure 9: Simulation results of Type 1 attacks, from [17].
Left: Conventional 8-way SA cache. Right: Newcache.

Case Study: Type 2 attacks (e.g., Prime-and-probe)
Zhang [35] simulates a conventional SA cache and five secure

cache architectures against Type 2 attacks, replicated in Figure 10.
Solid red lines are the candidate keys’ probability distribution, dotted
blue lines are the key byte values. A flat red line means no key

leakage, while overlap of red and blue lines shows key leakage. We
see that SP, PL, Newcache and RP caches can defend against type 2
attacks (’

p
’ in Table 7), while conventional SA and RE caches leak

key information (’X’ in Table 7).

Figure 10: Simulation results of Type 2 attacks, from [35].

7 CONCLUSIONS AND FUTURE WORK
We propose a new Probabilistic Information Flow Graph (PIFG)
model to show the root causes of information leakage. We then
propose a new metric, Probability of Attacker’s Success (PAS), to
quantify a cache architecture’s resilience against cache side-channel
attacks. It is a unified model which can be applied to all types of
cache side-channel attacks and different cache architectures. We use
this model to evaluate nine caches’ resilience (security) to all four
types of cache sie-channel attacks. Our model is very extensible and
can model new attacks and new cache architectures.

We have provided an unbiased and uniform way to simultaneously
model the attacker, the victim and the cache architecture in the design
phase. We hope that this helps advance the goal of more rigorous
security analysis of secure cache architectures, in particular, and
secure hardware-software architectures, in general.

Some directions for future work we suggest are: applying our
PIFG model for software or system level defenses, applying it to
other side-channel attacks, such as memory buses, EM and power
consumption side channels, and providing a tool for computing PAS.
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